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The unsteady interaction of a moving shock wave with nearly homogeneous and
isotropic decaying compressible turbulence has been studied experimentally in a
large-scale shock tube facility. Rectangular grids of various mesh sizes were used to
generate turbulence with Reynolds numbers based on Taylor’s microscale ranging
from 260 to 1300. The interaction has been investigated by measuring the three-
dimensional velocity and vorticity vectors, the full velocity gradient and rate-of-strain
tensors with instrumentation of high temporal and spatial resolution. This allowed
estimates of dilatation, compressible dissipation and dilatational stretching to be
obtained. The time-dependent signals of enstrophy, vortex stretching/tilting vector
and dilatational stretching vector were found to exhibit a rather strong intermittent
behaviour which is characterized by high-amplitude bursts with values up to 8
times their r.m.s. within periods of less violent and longer lived events. Several of
these bursts are evident in all the signals, suggesting the existence of a dynamical
flow phenomenon as a common cause. Fluctuations of all velocity gradients in
the longitudinal direction are amplified significantly downstream of the interaction.
Fluctuations of the velocity gradients in the lateral directions show no change or
a minor reduction through the interaction. Root mean square values of the lateral
vorticity components indicate a 25% amplification on average, which appears to be
very weakly dependent on the shock strength. The transmission of the longitudinal
vorticity fluctuations through the shock appears to be less affected by the interaction
than the fluctuations of the lateral components. Non-dissipative vortex tubes and
irrotational dissipative motions are more intense in the region downstream of the
shock. There is also a significant increase in the number of events with intense
rotational and dissipative motions. Integral length scales and Taylor’s microscales
were reduced after the interaction with the shock in all investigated flow cases. The
integral length scales in the lateral direction increase at low Mach numbers and
decrease during strong interactions. It appears that in the weakest of the present
interactions, turbulent eddies are compressed drastically in the longitudinal direction
while their extent in the normal direction remains relatively the same. As the shock
strength increases the lateral integral length scales increase while the longitudinal
ones decrease. At the strongest interaction of the present flow cases turbulent eddies
are compressed in both directions. However, even at the highest Mach number the
issue is more complicated since amplification of the lateral scales has been observed
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in flows with fine grids. Thus the outcome of the interaction strongly depends on the
initial conditions.

1. Introduction
Interactions of shock waves with turbulent flows are of great practical importance in

external and internal aerodynamics of engineering applications since they considerably
modify the fluid field by vorticity and entropy production and transport. Of particular
interest is the interaction of shock waves propagating inside a turbulent flow, which
can be considered as nearly isotropic and nearly homogeneous. Travelling shock waves
or expansion waves can be generated inside turbines or compressors of turbine engines
as a result of unsteady flow phenomena. New concepts of engines based on pulse
detonations also involve travelling shock waves and related unsteady flow phenomena.
These moving waves can interact with rotating or stationary blades as well as with the
flow and may result in phenomena which can affect the operation and performance
of the engine.

Past work has shown that the interaction between the shock wave and turbulent
flow is mutual and the coupling between them is very strong. Complex linear and
nonlinear mechanisms are involved which can cause considerable changes in the
structure of turbulence and its statistical properties and alter the dynamics of the
shock wave motion. Amplification of velocity fluctuations and substantial changes in
length scales are the most important outcomes of interactions of shock waves with
turbulence. This indicates that such interactions may greatly affect mixing. The use
of shock waves, for instance, has been proposed by Budzinski, Zukoski & Marble
(1992) as means to enhance mixing of fuel with oxidant in ramjets.

Turbulence amplification through shock wave interactions is a direct effect of the
Rankine–Hugoniot relations when they are coupled with the downstream equations.
However, this type of amplification should be decoupled from other effects which also
contribute to turbulence amplification such as destabilizing streamline curvature, flow
separation, dilatation effects or longitudinal pressure gradients which may be present
in the flow before or after the interaction with the shock (Andreopoulos & Muck
1987; Honkan & Andreopoulos 1992).

The recent review by Andreopoulos, Agui & Briassulis (2000) has indicated that
the outcomes of the shock–turbulence interaction depend on:

(i) the characteristics of the interacting shock wave, which include its strength,
relative orientation to the incoming flow, and location and shape;

(ii) the state of turbulence of the incoming flow as it is characterized by the fluctua-
tion levels of velocity, density, pressure and entropy and length scales;

(iii) the level of compressibility of the incoming flow and
(iv) the flow geometry and boundary conditions.
The present work focuses on an idealized case of an interaction of a planar shock

wave travelling through grid-generated turbulence. This flow represents an interaction
with a simplified yet relevant geometry, which can be used to investigate basic physics
and/or as a test case for turbulence modelling in computational fluid dynamics. One
way to simulate experimentally this interaction is by taking advantage of the induced
flow behind a moving shock in a shock tube. This flow is passed through a turbulence-
generating grid and the decaying turbulence behind the incident shock interacts with
the shock wave after it has been reflected from the endwall of the shock tube.
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Figure 1. (a) Schematic of flow interaction. (b) x–t diagram of the interaction.

Figure 1(a) shows a schematic of the flow interaction in the shock tube. This flow
configuration in the shock tube provides a platform to investigate some fundamental
issues associated with the amplification of turbulence through its interaction with the
moving shock wave.

A unique facility has been developed at CCNY in which the Mach number of the
flow behind the reflected shock can be controlled independently of the shock wave
strength to a certain extent. This has been achieved by replacing the endwall of the
shock tube with a porous wall of variable porosity. The large size of this facility
allows measurements of turbulence with high spatial and temporal resolution (see
Briassulis & Andreopoulos 1996; Briassulis, Agui & Andreopoulos 2001; Agui 1998).
Thus, shock interactions even with incompressible flows can be generated. Figure 1(b)
depicts the wave patterns generated inside the shock tube and their reflections over
various hardware components.

Previous experimental work on this type of shock wave interaction is very limited.
Keller & Merzkirch (1990) measured the density fluctuations in a similar interaction
between a travelling wave and the wake of a perforated plate by using speckle
photography. They demonstrated that density fluctuations are considerably amplified.
The experimental works of Honkan & Andreopoulos (1992) and Honkan, Watkins &
Andreopoulos (1994) showed for the first time the dependence of the interaction of
the shock wave with grid generated turbulence on the turbulent scales of the incom-
ing flow. Haas & Stutervant (1987) and Hesselink & Stutervant (1988) investigated
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the interaction of a weak shock wave with a single discrete gaseous inhomogeneity
and statistically uniform medium respectively. It was found that the shock-induced
Rayleigh–Taylor instability enhances mixing considerably, and that turbulent scales
seem to decrease after the passage of the shock. The latter is in contrast to previous
work by Keller & Merzkirch (1990) and Debieve et al. (1985) and most probably is
due to the Rayleigh–Taylor instability, which is as a result a nonlinear interaction of
two pre-existing modes in the flow, namely, that of the vorticity mode and that of the
entropy.

The shock wave from a simplistic point of view can be considered as a steep pres-
sure gradient. Information from experiments and simulation of low-speed flows with
such pressure gradients indicate that ‘rapid distortion’ concepts hold and, in the limit
of extremely sharp gradients the nonlinearity may be ignored (Hunt 1973; Hunt &
Carruthers 1990). The physics associated with the compressibility phenomena that are
responsible for this amplification are not well understood. There are various issues
which remain unresolved. For instance: How much of the amplification of turbulence
in interactions with shock waves is due entirely to the Rankine–Hugoniot conditions?
Why are small eddies amplified more than large eddies? Are the length scales of the
incoming turbulence reduced or amplified through such interaction? Are the sole-
noidal and dilatational terms of the dissipation rate of turbulent kinetic energy also
reduced? How is the velocity gradient tensor Aij = ∂Ui∂xj affected by the shock wave?
Is enstrophy amplified more than turbulent kinetic energy?

The first attempt to theoretically consider the passing of a turbulent field through a
shock wave is attributed to Ribner (1953, 1986) who decomposed the incident distur-
bance shear wave into acoustic, entropy and vorticity waves. In his linear interaction
analysis (LIA) Ribner formulated the interaction of a plane vorticity wave with a
shock wave as a boundary-value problem. The wavenumber vector is refracted across
the shock due to the changes in thermodynamic properties and therefore diverges
at a different angle from the incident. The condition that the phases should remain
unchanged across the shock yields, that, upstream and downstream of the shock,
the cyclic frequency and the component of the wavenumber vector parallel to the
shock front are the same. Ribner’s analysis obtained the first evidence of turbulence
enhancement through interactions with shock waves. His predictions were verified
qualitatively by Sekundov (1974) and Dosanjh & Weeks (1964). Several analytical
and numerical studies of this phenomenon by Morkovin (1960), Zang, Husseini &
Bushnell (1982), Anyiwo & Bushnell (1982), Rotman (1991), Lee, Lele & Moin (1993)
and Hannappel & Friedrich (1995) show very similar turbulence enhancement. Chu &
Kovasznay (1957) indicated that there are three fluctuating modes that are coupled and
responsible for the turbulence amplification: (i) acoustic (fluctuating pressure and ir-
rotational velocity mode); (ii) turbulence (fluctuating vorticity mode) and (iii) entropy
(fluctuating temperature mode). These modes are, in general, nonlinearly coupled and
the Rankine–Hugoniot jump conditions across the shock indicate that when any one
of the three fluctuating modes is transferred across the shock wave it not only gene-
rates the other two but it may also considerably amplify itself. The present work
focuses primarily on the turbulence and secondarily on the acoustic (pressure) fluctua-
tion modes, since temperature fluctuations are extremely small (see Honkan et al.
1994). The transfer of homogeneous and isotropic turbulence across a normal shock
propagating inside the flow has been studied in the present investigation. Previous
work on this subject is rather limited. The reason is that it is rather difficult to
experimentally setup a configuration where a decaying, grid-generated turbulence
will interact with a plane shock in a wind tunnel. Debieve & Lacharme (1985), for
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Figure 2. (a) Schematic of shock tube research facility. (b) Two-dimensional schematic of
the working section with pressure and hot-wire tap locations along the 8 ft length.

instance, attempted to generate homogeneous and isotropic turbulence by installing
a grid inside the settling chamber of a supersonic wind tunnel. The flow, however,
became anisotropic after it passed through the contraction of the wind tunnel. In
another attempt by Barre, Allem & Bonnet (1996) to generate shock wave interactions
with isotropic turbulence a normal shock wave was formed by the interaction of two
oblique shock waves of symmetrical orientation. However, the flow after the interac-
tion was highly accelerated because of the presence of two shear layers/slip lines at
the boundaries of the useful flow region.

The objective of the present research work is a better physical understanding of the
interaction of a moving shock wave with the decaying turbulence. The work is a con-
tinuation of previous experiments that were carried out by Honkan & Andreopoulos
(1992), and Honkan, Watkins & Andreopoulos (1994) in a small-diameter shock tube
and by Briassulis et al. (2001) in the new high-resolution shock tube research facility
of CCNY. The present paper reports the results of the measurements of the time-
dependent, three-dimensional velocity and vorticity fields and full velocity gradient and
strain-rate tensors during the interaction with the shock wave. These measurements,
particularly those that include measurement of the full velocity gradient tensor, are
extremely difficult to carry out and the results obtained are the first attempted in this
type of compressible flow. The work by Xanthos, Briassulis & Andreopoulos (2002)
describes the behaviour of the pressure field during the shock wave interaction with
free-stream turbulence. A full description and documentation of the incoming com-
pressible decaying turbulence before the interaction can be found in Briassulis et al.
(2001, hereafter referred to as BAA).

2. Experimental set-up and techniques
The experiments were performed in the large-scale Shock Tube Research Facility

(STURF), shown in figure 2(a), which is located at the Mechanical Engineering
Department of CCNY. The large dimensions of this facility, 1 ft in diameter and 88 ft
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in length, provide an excellent platform for high-spatial-resolution measurements of
turbulence with long observation time of steady flow. The induced flow behind the
travelling shock wave passes through a turbulence-generating grid installed at the
beginning of the working section of the facility. Several turbulence-generating grids
were used at three different flow Mach numbers each. The velocity of the induced
flow behind the shock wave depends on the rupture pressure of the diaphragm, i.e.
driver strength P4.

The present shock tube facility has three distinguishing features. The most signi-
ficant one is the ability to control the strength of the reflected shock and the flow
quality behind it by using a removable porous endwall, placed at the flange between the
dump tank and the working section. The impact of shock wave on the endwall would
result in a full normal shock reflection in case of zero porosity (solid wall), a weak
shock reflection in case of moderate porosity, or expansion waves in case of infinite
porosity (open endwall). The second feature of the facility is the ability to vary the
total length of the driven section by adding or removing one of the several pieces or
modules that are available or rearrange their layout. Proper arrangement of the layout
of the various modules of the shock tube can maximize the duration of the useful
flow. The third feature of the facility is its large diameter, which allows a large area
of uniform flow in the absence of wall effects to be available while at the same time
providing a platform for high spatial resolution in the measurements of turbulence.

The working (test) section is fitted with several hot-wire and pressure ports (see
figure 2b). Thus pressure, velocity and temperature data can be acquired simulta-
neously at various locations downstream from the grid, therefore reducing the variance
between measurements. High-frequency pressure transducers, hot-wire anemometry
and Rayleigh scattering techniques for flow visualization have been used in the present
investigation.

To simultaneously resolve two-dimensional velocity components with hot wires, a
cross-wire (X-wire) arrangement was used. New three-wire probes were designed and
custom built by AUSPEX Corp. Six different three-wire probe assemblies were used
concurrently at different downstream locations, all adjustable to different lengths,
each carrying two hot wires in an X configuration and one cold wire for simultaneous
velocity and temperature measurements respectively. The three-wire probes were
equipped with 5 µm platinum/tungsten wires for velocity measurements and with
a 2.5 µm platinum/tungsten wire for temperature measurements. To eliminate any
wake effects from probes located upstream, all of the probes were staggered at
increasing distances from the tube wall with downstream station and reoriented by
90◦ every other probe by using two axial arrays of probe taps along the test section.
The cross wires were driven by DANTEC anemometers model CTA56C01 and the
temperature wires were connected to EG&G model 113 low-noise battery-operated
pre-amplifiers/filters. The output signal of the cold wire was digitally compensated for
thermal lag up to frequencies of interest. For more details on the hot-wire techniques
applicable to shock tubes see Briassulis et al. (1995) where estimates of uncertainties
in the measurements are also given.

This experimental set-up provided time-dependent measurements of two velocity
components, temperature and wall pressure at several locations of the flow field simul-
taneously. In addition, time-dependent, three-dimensional vorticity measurements
were carried out by using a new vorticity probe (see Agui 1998; BAA; Andreopoulos &
Honkan (1996) and Honkan & Andreopoulos (1997).

The shock tube was fitted with nine pressure taps in the working section and eight
in the driven section. Pressure transducers were placed throughout the driven section
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Grid M , mesh size Solidity, Mu, Flow Mach
(meshes/in.) (mm × mm) σ number ReM Reλ

10 × 10 2.54 0.36 0.446 40640 NA
10 × 10 2.54 0.36 0.578 56919 NA
10 × 10 2.54 0.36 0.623 62285 NA
8 × 8 3.175 0.36 0.371 37138 162
8 × 8 3.175 0.36 0.461 53506 195
8 × 8 3.175 0.36 0.592 63458 246
5 × 5 5.1 × 5.1 0.37 0.371 59654 160–318
5 × 5 5.1 × 5.1 0.37 0.477 86315 200–269
5 × 5 5.1 × 5.1 0.37 0.576 102421 240–458
4 × 4 6.35 × 6.35 0.44 0.354 68208 213–401
4 × 4 6.35 × 6.35 0.44 0.446 105389 198–336
4 × 4 6.35 × 6.35 0.44 0.594 132921 113–352
3 × 3 8.5 × 8.5 0.39 0.321 81687 154–239
3 × 3 8.5 × 8.5 0.39 0.474 124203 184–201
3 × 3 8.5 × 8.5 0.39 0.564 215043 330–747
2 × 2 12.7 × 12.7 0.28 0.346 137319 186–281
2 × 2 12.7 × 12.7 0.28 0.436 169025 195–452
2 × 2 12.7 × 12.7 0.28 0.592 261667 560–1331

1.33 × 1.33 19.05 × 19.05 0.26 0.368 200371 210–278
1.33 × 1.33 19.05 × 19.05 0.26 0.504 295721 217–612
1.33 × 1.33 19.05 × 19.05 0.26 0.607 398661 257–760

Table 1. Bulk flow parameters of the experiments performed.

in order to monitor the passage of the shock wave and also to check its uniformity
through the driven section. For the present experiments, high-frequency-response
Kulite pressure transducers type XCQ-062 were installed in the shock tube at various
locations, so that wall pressure fluctuations can be measured simultaneously as a
function of time. The shock tube was pressurized so any leaks can be detected, as well
as to calibrate the pressure transducers. The shock tube was free of leaks and the
static response of the transducers was found to be linear. Aluminium plates were used
as diaphragms and were placed in between the driver and the conical sections.

A detailed description of the facility and the results of the qualification tests can
be found in Briassulis (1996) and Briassulis et al. (1996).

During each experiment all signals were acquired simultaneously with the ADTEK
data acquisition system. The ADTEK AD830 board is a 12-bit EISA data acquisition
system, capable of sampling simultaneously eight channels at 333 kHz each channel.
Three of those boards were available providing 24 simultaneous sampled channels
at 333 kHz per channel. It should be mentioned that no sample-and-hold units were
used in the present data acquisition since each channel was dedicated to an individual
analog to digital converter. The data acquisition system was triggered by the arrival
of the shock wave at the location of a wall pressure transducer 3.30 m upstream of
the grid. The grid was installed at the beginning of the working section.

The bulk flow parameters of the experiments performed are summarized in table l
and include the grid mesh density, the mesh size M , the flow Mach number M2 behind
the incident shock of strength MI , the Reynolds number based on mesh size ReM

and mean flow velocity U1, the strength of the reflected shock MR and the solidity of
the grids σ , defined as the projected solid area per unit total area so that σ = 1 −
[1 − d/M]2 where d is the rod diameter. All grids were fabricated from circular steel
rods.
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The values of M2 were obtained in the flow downstream of the grid and they are
slightly smaller than the Mach number values obtained in the approaching flow
upstream of the grid (BAA). As the incoming shock wave reaches the grid, it is trans-
mitted through the grid with some minor losses due to viscous effects while a very
weak reflected shock travels as a small disturbance in the opposite direction upstream
as a result of the impact of the incident shock on the grid. This disturbance is stronger
at higher shock Mach numbers and in impacts with higher solidity grids. This weakly
reflected shock reduces the velocity and increases the temperature of the approaching
flow by small amounts respectively. The induced flow behind the incident shock, after
it has experienced the effects of the upstream travelling weakly reflected shock, passes
through the grid to form a nearly homogeneous and isotropic flow.

3. Vorticity measurements
A new multi-hot-wire probe has been developed which is capable of measuring

velocity-gradient-related quantities in non-isothermal flows or in compressible flows.
The present probe has been build using the experience gained with vorticity measure-
ments in incompressible flows (see Honkan & Andreopoulos 1997) by using a probe
with nine wires, and with velocity measurements in compressible flows by using single
and cross-wire probes (see Briassulis et al. 1995). The present vorticity probe, which
consists of 12 wires, is a modification of the original design with nine wires by Honkan
& Andreopoulos (1997). The three additional wires were operated in the so-called
constant current mode and used to measure time-dependent total temperature.

Since the probe essentially consists of a set of three modules or arrays (see
figure 3a–c) it is necessary to provide several key features of the individual hot-wire
modules. Each module contains three hot wires operated in the constant-temperature
mode (CTM) and one cold-wire sensor operated in the constant-current mode (CCM).
Each wire of the triple-wire sub-module is mutually orthogonal to the others, thus
oriented at 54.7◦ to the probe axis. Each of the 5 µm diameter tungsten sensors is
welded on two individual prongs, which have been tapered at the tips. Each sensor
is operated independently since no common prongs are used. Each of the 2.5 µm
diameter cold wires was located on the outer part of the sub-module.

Details of the techniques associated with the use of triple-wire arrays can be found
in Andreopoulos (1983a) while estimates of errors related to probe geometry and
turbulence intensity are described by Andreopoulos (1983b).

Extensive testing of the probe has been carried to assess its performance in shock
tube flows. The reader is referred to BAA for details of the tests and the techniques
associated with the use of the probe. The probe was also tested in low-speed incom-
pressible boundary layer flows where vorticity measurements have been obtained in
the past with a nine-wire probe (see Honkan & Andreopoulos 1997) and with optical
techniques (see Agui & Andreopoulos 2003). Comparison of the data obtained with
the new probe with these previous measurements was very satisfactory. This provided
considerable confidence in the use of the probe in weakly compressible grid-generated
turbulence, described by BAA, and in flows with shock interactions like the present
one.

Velocity calibrations were carried out inside the shock tube by firing the tube at
various pressures corresponding to Mach numbers anticipated to be found in the
flows under investigation. Yaw and pitch calibration of the probe was also carried
out in-situ.
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No. Grid x/M Mu U1 (m s−1) ρ (kgm−3) P (kPa)

1 2 × 2 48 0.308 121 1.59 155
2 2 × 2 48 0.388 151 1.74 174
3 3 × 3 72 0.362 139 1.7 170
4 3 × 3 72 0.425 161 1.84 188

Table 2. Bulk flow parameters in vorticity measurements.

The digitized signals were processed off-line. The cold-wire signals were first conver-
ted to total temperature, which together with the hot-wire signals were used to obtain
instantaneous three-dimensional mass fluxes at three neighbouring locations within
the probe. Numerical techniques and algorithms used in the computations of velocity
gradients were very similar to those described by Honkan & Andreopoulos (1997).
The only difference is that in the present case mass fluxes and their gradients were
computed at the centroid of each module instead of velocities and velocity gradients.

Mass fluxes were further separated into density and velocity by using the method
adopted by Briassulis et al. (1996). Decoupling density from mass fluxes assumes that
static pressure fluctuations are small. This is the so-called ‘weak’ version of the original
‘strong Reynolds analogy’ hypothesis of Morkovin (1960). The original hypothesis is
based on the assumption that pressure and total temperature fluctuations are very
small. In the present work, total temperature was measured directly and therefore no
corresponding assumptions were needed. The pressure, however, was measured at the
wall and not at the location of the hot-wire measurement. The mean value of this
pressure signal was used to separate the density and velocity signals since no mean
pressure variation has been detected across a given section of the flow. The procedure
involves an expression for mass flux, mi , in terms of total temperature, T0, and
pressure, p, at the centroid of each array:

mi = ρUi = pUi/RT = pUi/[R(T0 − UkUk/2cp)],

where Ui is the instantaneous velocity component, i = 1, 2 or 3 and UkUk = U 2
1 +

U 2
2 + U 2

3 . The velocity can be decomposed into Ui = Ū i + ui . An iterative scheme was
used to decouple density and velocity.

In summary, it should be emphasized that the major contribution of the present
hot-wire techniques is the addition of temperature wires to obtain instantaneous
information on total temperature. This allowed decoupling of all partial sensitivities
of the probe from each other. Thus,

Sρ = ∂E/∂ρ �= Sρu = ∂E/∂ρu �= Su = ∂E/∂u,

where E is the voltage output from the probe.
Four additional experiments were carried out with the new multi-wire vorticity

probe. Table 2 shows the bulk flow parameters of the experiments, which were per-
formed at two different flow Mach numbers and with two different grids.

The present vorticity probe was capable of measuring the full rate-of-strain and rate-
of-rotation tensors, Sij and Rij respectively, as well density gradients with high tem-
poral and spatial resolution upstream and downstream of the shock wave flow fields.
In order to demonstrate the capabilities of the present probe and provide information
about its accuracy the dilatation term Skk = (1/ρ)Dρ/Dt has been computed by two
different methods from the present data. In the first method Skk has been computed
from the velocity gradients information. The second method involved the estimation
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of dilatation from the density information to compute (1/ρ)Dρ/Dt . A comparison
of the data obtained by these two methods is shown in figure 3(d) where the two
signals are plotted. The overall agreement between the two signals appears to be very
good. There are occasional differences between the two signals, particularly around
the peaks, of no more than 7%. This difference, however, has no effect on the overall
statistics.

4. The shock tube flow
Unlike conventional low-speed grid turbulence, generated in a wind tunnel, the pre-

sent flow is produced in a shock tube behind a moving shock wave. Shock tubes are
traditionally used to study mainly moving shock waves and their reflections or interac-
tions with solid surfaces and to generate high-temperature environments. Our work
is not the first one to configure a stationary flow behind a moving shock wave. There
have been several attempts in the past to utilize the induced flow behind the shock
to study several flow phenomena.

The formation of a nearly homogeneous and isotropic turbulent flow with decaying
intensity can be described by considering the time-dependent signals of the three velo-
city components shown in figure 4(a). The signals shown in this figure were obtained
by the vorticity probe at x/M = 72 downstream of the 3 × 3 grid with solidity σ = 0.39.
As the incoming shock reaches the grid, it is partly transmitted through the grid with
some minor losses of its strength associated with viscous effects, and it is partly
reflected and it travels in the opposite direction. The work by Xanthos et al. (2003)
provides a more detailed account of the interaction of the shock wave with the grid
and the pressure losses measured during its transmission through the grid.

The transmitted incident shock propagates downstream and the probe detects it
as is indicated by the sudden rise in the longitudinal velocity component U1. The
induced flow behind the incident shock, after it has experienced the effects of the
upstream travelling weakly reflected shock off the grid, passes through the grid to
form a nearly homogeneous and nearly isotropic flow.

The incident shock travels downstream and is reflected off the porous endwall and
returns to the measuring location to interact with the decaying turbulence present in
the induced flow behind the incident shock. The reflected shock, which travels in the
upstream direction, reduces the velocity and increases the temperature of the appro-
aching flow initially induced by the incident shock. This is evident in the longitudinal
velocity component shown in figure 4(a). The lateral velocity components, U2 and U3,
which are parallel to the shock front, experience no change in their mean value with
the arrival of the reflected shock.

The duration of the useful induced flow behind the shock wave in the present
hardware configuration of the various components of the shock tube may be limited
by the arrival of reflected expansion waves from the driver endwall which are formed
during the rupture of the diaphragm and the arrival of the contact surface which
is characterized by a large temperature gradient. The longitudinal velocity signal in
figure 4(a) also shows the arrival of the expansion waves, which decrease the velocity
of the flow gradually.

Statistical averages were obtained from the quasi-stationary signal before and after
the arrival of the reflected shock off the endwall. The signals were first inspected
to detect the presence of undesirable grid shocks or expansion waves within the
useful duration of the signals as well as for their stationarity. The signals displayed a
relatively slow growth of the ensemble mean values with time, indicating that the flow
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Figure 4. (a) Time-dependent signals of three velocity components. (b) Histograms of the
velocity components upstream (solid lines) and downstream (dashed lines) of the interaction.
Values of U2 have been displaced by 25 m s−1.

could be considered stationary. The reader is referred to BAA for a detailed description
of the techniques used to obtain reliable statistics from the time-dependent data.

An extensive program has been undertaken to assess the quality of the grid flow
established in the shock tube. This was accomplished by measuring the flow uniformity
and homogeneity in the working section on planes normal to the flow and in the longi-
tudinal direction. The flow isotropy was also tested and verified by several different
methods. Results and details of the flow quality are shown and discussed by BAA.
They have indicated that flow homogeneity is better in fine grids than in coarse ones.

Typical results obtained in the present investigation are shown in figure 4(b) where
histograms of the values of the three velocity components upstream of the shock,
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U1,u, U2,u, U3,u and downstream of the shock U1,d , U2,d , U3,d are plotted. The range of
fluctuations appears to be the same in all of the three velocity components before the
interaction as expected in an isotropic flow. As a result of the interaction, however,
turbulence characteristics change. Longitudinal velocity fluctuations increase while
lateral velocity fluctuations are slightly reduced.

To conclude this section, it appears that the flow established in the shock tube is
invariant to translation and rotation since its quality, in terms of uniformity of statis-
tical averages, and isotropy is very good.

5. Uncertainty estimates
The pressure and total temperature measurements depend directly, through obtained

calibration constants, on the raw voltage data from the individual sensors. These
probes because of their linear response produced two calibration constants, sensitivity
and d.c. offset. Therefore estimates of the uncertainty in the measurements of pressure
and total temperature acquired through a 12-bit A/D converter depended mostly on
the bit resolution and the residual errors from the calibration constants. Uncertainties
in the range of less than 0.5% in pressure and about 2% in total temperature were
found for typical measurements of these two quantities.

The mass flux measurements were tied to significantly more complex relations,
which depended on the individual and relative geometry of different sensors. Mass flux
was found to depend on the following variables: captured raw voltage Ei , reference
temperature Tr , total temperature To, wire temperature Tw , calibration constants and
yaw or pitch coefficients. Estimates of the uncertainty in the measurements of mass
flux after considering all the above contributing factors was found to be between 1%
and 3%. Uncertainty values for the velocity were estimated to be between 1.5% and
3.5%. In obtaining all these estimates the square root of the squares of all partial
uncertainties involved was assumed to model the error propagation into the final
results. MATHCAD was used to calculate the partial uncertainties.

Following the work of BAA estimates of the uncertainties associated with the
measurements of velocity gradients were also obtained by considering the propagation
of the uncertainties in the measurement of each quantity involved in the process. A
typical velocity gradient is measured through the following approximation:

∂Ui/∂xj ≈ (U2 − U1)/lp = F

where U2 and U1 are the velocities at two nearby locations, and lp is the distance
between these locations. If the uncertainties in the measurements of U2 and U1 are the
same, �U1 =�U2 =�U , and lp is determined accurately, then the relative uncertainty
�F/F will be given by:

�F/F = {2[�U/(U2 − U1)]
2}1/2

A typical �U is 2% of mean U , which corresponds to about 2 m s−1 while typical velo-
city differences U2 − U1 can be up to six times the r.m.s. value, u′. If a typical value
of this velocity difference is assumed of about 30 m s−1 in the near field of the grid
and 15 m s−1 further downstream, then the uncertainty �F/F appears to be 10% in
the near field and 14% in the far field.

Lower uncertainty estimates have been found if the relation ∂Ui/∂xj ≈ u′/λ= F is
used for their computation. In this case the relative error is

�F/F = {(�u′/u′)2 + (�λ/λ)2}1/2
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where λ is Taylor’s microscale. For a typical relative error in u′ of 5% and 10% in λ
the relative error appears to be about 11%. It should be note that the relative error
�F/F increases as the distance away from the grid increases because the absolute
value of F decreases.

Finally the finite number of statistically independent events considered in the data
analysis of certain flow cases introduces an uncertainty in the statistical results.
Computations of the integral time scale, Lt from auto-correlation functions Ruu(τ )
indicated that the number of independent samples in general was between 200 and 400.
Downstream of the interaction, time scales Lt increase and the number of statistically
independent events is reduced. In addition, the duration of the useful data upstream
of the shock is shortened at locations close to the porous endwall because the reflected
shock wave arrives earlier than at locations close to the grid. The start of the useful
data corresponding to the flow upstream of the incident shock is also delayed by
the passage time of the originally stagnant air mass between of the grid and the
measuring location. This air is downstream of the grid when the incident shock wave
passes and therefore the corresponding induced flow does not pass through the grid.
The number of independent samples in these cases was about N � 60–100. Bendat &
Piersol (2000) indicate that the relative error in the estimate of the variance of the
velocity fluctuations is 2/N , which for this specific case at large x/M is between 2%
and 4%. It should be noted that N depends on the shape of Ruu, consequently N

can be extended to large values if low-frequency disturbances are present in the flow
field, which are not related to the actual flow turbulence. If high-pass filtering at
200–400 Hz is applied to the present data Lt is reduced substantially and N increases
by a factor of 2. No such filtering has been applied to the present data other than
what is imposed by the record length. For a 10 ms record length the lowest frequency
of interest is about 100 Hz.

Another direct piece of evidence of the adequacy of statistical samples can be
provided by the rate of convergence of the various statistical quantities, which are com-
puted in the present data analysis. As was shown in BAA, estimates of the convergence
uncertainties observed in the present analysis indicate an error of less than 3%. This
error is substantially less at higher Mach numbers and closer the grid locations.

The spatial resolution of the probe is between 0.6λ and 3λ upstream of the shock
region and 0.3λ and λ in the downstream region. The resolution expressed in
Kolmogorov’s viscous scale η = (ν3/4/ε)1/4 appears to be in the range between 3η
and 30η. In that respect the expected attenuation of the measurement of vorticity
r.m.s. due to limited spatial resolution is not very significant.

6. The decay of isotropic turbulence
Three characteristic regions can be found in the flow behind a turbulence-generating

grid. First is the developing region close to the grid where rod wakes are merging and
production of turbulent kinetic energy takes place. This region is followed by one
where the flow is nearly homogeneous and isotropic but where appreciable energy
transfer from one wavenumber to another occurs. This region is best described by
the power-law decay of velocity fluctuations

ū2

U 2
= A

[
x

M
− x0

M

]−n

(6.1)

where A is the decay coefficient, (x/M)0 is the virtual origin, n is the decay exponent.
The third region or final region of decay is the farthest downstream of the grid and
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is dominated by strong viscous effects acting directly on the large-energy-containing
eddies.

The turbulent or fluctuation Mach number, Mt = qt/c̄ with qt = (uiui)
1/2

and c the
speed of sound, seems to be the most appropriate parameter describing compressible
turbulence. It was shown in BAA that Mach number fluctuations in weakly com-
pressible turbulence decay according to the power law

M2
t = B

[
x

M
− x0

M

]−n

(6.2)

where B = 3AM2
u .

In flows where turbulence is distorted by a rapidly applied strain, like the strain
S11 = (∂U1/∂x1)sw in the present case across the shock wave, the dissipative time scale
of turbulence or eddy turnover time Tε =Lε/q , where Lε is the dissipation length
scale and q = (1/2q2

t )
1/2, should be directly compared to the time scale of the applied

strain Tsw = 1/S11.
The dissipation length scale, Lε , is defined as Lε = q3/ε, where ε is the dissipation

rate of turbulent kinetic energy q2. The time Tt then appears to be Tt = q2/ε. This time
scale indicates how fast the kinetic energy of a typical turbulent eddy is dissipated
into heat. According to equation (6.1) q2 decays as [x − x0]

−n and therefore ε varies
as [x − x0]

−n−1. Under these circumstances Tt is proportional to [x − x0], i.e.

Tt

U

M
=

q2

ε

U

M
=

1

n

[
x

M
− x0

M

]
. (6.3)

If it is assumed that turbulent eddies are convected by the mean velocity U then
x = Ut and the (6.3) becomes

Tt =
q2

ε
=

1

n
[t − t0]

which suggests that the eddy turnover time is proportional to the time of (6.3)
convection.

A typical decay of velocity fluctuations, as fitted by the power law of equation (6.1),
for the 5.08 mm mesh size grid and the corresponding dissipation rate are shown in
figures 5(a) and 5(b) respectively. The corresponding eddy turnover time Tt is shown
in figure 5(c). The velocity fluctuations and the dissipation rate are higher at higher
upstream flow Mach numbers that also correspond to higher ReM . These effects cannot
simply be attributed to the increase of the mean Mach number and the associated
compressibility effects of the flow but also to the increase of ReM . Although Mach
number and Reynolds number are two different independent variables they may cause
quite similar effects on the flow, which may be difficult and sometimes impossible to
distinguish clearly from each other. The work of BAA has shown that ReM effects
are of about the same order of magnitude and of the same sign as Mach number
effects at low Mach numbers and low ReM . They diminish gradually as Mu and ReM

increase. Thus, in most of the cases, compressibility effects prevail over Reynolds
number effects at high Mu and high ReM .

The non-dimensional data of q2/ε shown in figure 5(c) clearly follow the linear
dependence on x/M that is given by equation (6.3). It appears that Tt increases at
locations downstream of the grid. The slope of each of these straight lines is not the
same at different Mach umbers. However, the response of these data to increasing Mu

is not quite obvious. The slope as shown by (6.3) is the inverse of the decay exponent
n appearing in equation (6.1), which mainly depends on Mu and ReM or grid solidity
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Figure 5. (a) Decay of longitudinal velocity fluctuations, (b) dissipation rate of turbulent
kinetic energy, (c) non-dimensional dissipative time for various Mach numbers in the case of
grid with M = 5.08 mm. (d) Decay exponent n vs. ReM for various Mach numbers.

σ . The data of n obtained in BAA are re-plotted in figure 5(d). Values of n show
very weak dependence on ReM at Mu = 0.47 and 0.6. The strongest dependence of n

on ReM is evident at the lowest Mu =0.3. The values of n corresponding to Mach
numbers 0.3, 0.47 and 0.6 are 0.18, 0.43 and 0.25 respectively. A comparison of the
inverse of these values, i.e., 5.5, 2.3 and 4, with the slopes of the straight lines shown
in figure 5(c) shows agreement between the corresponding data, a fact that indicates
consistency among the present results. These data also explain the effect of Mu on
q2/ε. At values of Mu larger than 0.3, q2/ε increases with increasing Mu. This trend
cannot be extended to the low-Mu case, most probably because of the difference
in ReM . The data of n in figure 5(d) also suggest that at fixed Reynolds numbers,
n decreases with increasing Mu and therefore q2/ε increases with increasing Mu at
constant ReM . This is definitely true for ReM > 105, possibly for ReM > 0.87 × 105.

Inferences of the effect of ReM on q2/ε at constant Mu can be obtained by consi-
dering the dependence of n on ReM at fixed values of Mu as shown in figure 5(d).
It appears that q2/ε decreases with increasing ReM at Mu =0.3. However, the effect
of solidity of the grid σ on n and consequently also on q2/ε is not clear. If the first
point at the lowest ReM is excluded then n decreases with increasing solidity, which
indicates that q2/ε increases with increasing σ at Mu = 0.3. At higher Mu the data
suggest that q2/ε does not really depend strongly on σ or ReM .

The strain rate S11 that is associated with the imposed disturbance of the incoming
shock wave can be approximated by

S11 =

[
∂U1

∂x1

]
sw

≈ |�Us |
�xs
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where �Us is the velocity difference across the shock wave and �xs is the shock
wave thickness. An estimate of the shock wave thickness can be obtained according
to Thomson (1972) and typical values of the associated time scale, 1/S11, normalized
by the upstream velocity U and the mesh size of the grid M are plotted vs. Ms in
figure 6(a). Ms is the Mach number of the interacting shock wave which in the
present case is the reflected shock. The data indicate an exponential decrease of the
normalized time scale Tsw with increasing Ms .

The ratio of two time scales Rt = Tt/Tsw is plotted vs. Ms in figure 6(b). It appears
that Rt grows exponentially with Ms , which is most probably due to the exponential
decrease of Tsw with Ms rather than the weak increase of Tt with Ms . The data in
figure 6(b) also show that the eddy turnover time Tt is about 106 greater than the
time scale of the interaction Tsw . In flows like the present one where this ratio Rt

reaches large values, the inviscid rapid distortion theory (RDT) and its extension to
shock wave interactions (Debieve et al. 1985; Jacquin, Cambon & Blin 1993) may be
invoked to determine several bulk characteristics of the interaction.

Figure 7(a) shows a typical variation of the Mach number fluctuations obtained in
the present investigation with Reλ at x/M = 80, a location where turbulence appears
to be homogeneous and isotropic in all experiments carried out at various mean
flow Mach numbers Mu. Mt and Reλ are two independent variables used frequently
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in DNS to characterize the isotropic turbulence instead of Mt and ReM , which are
used mostly in experimental research where grids are used to generate isotropic
turbulence. The present data demonstrate a general trend showing that Mach number
fluctuations increase with increasing Reλ, a finding that has also been supported by
DNS observations.

Finally figure 7(b) shows typical values of the turbulent eddy turnover time Tt

obtained in the present work at x/M = 80 for various values of Reλ. The data indicate
that the normalized Tt increases rather fast with increasing Reλ.

7. Mach number fluctuations
The experimental work of BAA has established the validity of the decay law of

Mach number fluctuations in the compressible flow upstream of the shock as described
by equation (6.2). It has also been found that Mt increases with increasing Mu. After
the passage of the shock the flow field changes. Velocity fluctuations in the longitudinal
direction increase and Mach number fluctuations are also changed but not very
drastically because the amplification of velocity fluctuations in the longitudinal
direction is offset by an increase in mean temperature due to the compression. Thus
Mt after the interaction is sometimes higher and sometimes lower than that before
the interaction.

Figure 8(a) shows the results of three experiments with the 2 × 2 grid with M =
12.7mm. Values of Mt downstream of the interaction appear to be higher than the
corresponding values upstream. The increase in Mt depends on the incoming upstream
flow and the strength of the interaction, i.e. the Mach number of the shock wave Ms .
It appears that it is larger in interactions with stronger shock waves. The case of the
3 × 3 grid with M =8.5 mm, shown in figure 8(b), however, is different. Mt is reduced
during the weakest and strongest of the three interactions while it is increased during
the other one.

In all experiments, the decay of Mach number fluctuations downstream of the
interaction was found to follow a power law similar to that describing Mt in the
upstream flow region

M2
t,d = Bd

[
x

M
− x0,d

M

]−nd

. (7.1)

Determination of the virtual origin (x/M)0,d , decay exponent nd and decay co-
efficient Bd was accomplished by fitting the experimental data to the power law so
that the residual deviation from the original data is minimized. In this way all vari-
ables were determined concurrently under the condition of minimum deviation. In that
respect this approach represents a departure from previous practice where only two
of the three parameters were determined through a best-fit procedure while the third
one was fixed. An exception to this past practice is the work of Mohamed & LaRue
(1990). A consequence of this approach is that n can reach any positive value and
not only values >1 as usually is the case in previous works.

It should be emphasized that the applicability of the empirical power-law decay
does not necessarily imply isotropy. The flow downstream of the shock wave is the
outcome of the interaction of an isotropic turbulent flow with an axisymmetric dis-
turbance. As a result some anisotropy in the flow is expected, at least in the initial
stages following the interaction before the return to isotropy.

The present work documents the effects of the mesh size/mesh Reynolds number
as well as the interaction parameters on the above mentioned quantities Bd , (x/M)0,d ,
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and nd . Figure 9(a) shows a typical variation of the decay exponent, n, before and
after the interaction with the shock wave of Ms = 1.25 for various mesh sizes of grids.
The data indicate that both exponents nu and nd decrease with increasing mesh size
M . The data shown in figure 9(a) are plotted in figure 9(b) against the solidity of
each grid σ . Values of nu and nd appear to increase with increasing with σ . The
present results show that the exponent n depends on the mesh size and solidity of
the grids, i.e. initial conditions before the interaction, and that these values of n are
substantially less than one. The effect of the shock interaction is very substantial since
it changes the values of n and it depends on the Ms, Mu and initial conditions.

Figure 9(c) presents the ratio of the decay coefficient after the interaction with the
shock to that before the interaction, nd/nu. It can be seen that this ratio is always
greater than one for all investigated cases. In the weakest interactions this ratio
appears to be independent of ReM . In the cases of stronger interactions this ratio is
ReM dependent. Thus nd/nu depends on initial conditions, flow Mach number Mu

and shock strength Ms .
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8. The thermodynamic state of turbulence
DNS and LIA work has shown in the past that the thermodynamic properties of

the turbulent flow field can affect the interaction strongly. Jamme (1998), Barre et al.
(2000) and Mahesh, Lele & Moin (1997) have shown that the relative values of
velocity fluctuations, temperature fluctuations, pressure fluctuations and velocity–
temperature correlations play an important role in the amplification of velocity
fluctuations across the shock and in affecting other aspects of the interaction. Higher
values of velocity and vorticity amplifications have been observed when the sign of
the correlation between velocity and temperature fluctuations is negative. The thermo-
dynamic aspects of the incoming turbulence may change the effects of Mach number
or Reynolds number by up to 100% in certain cases. An attempt has been mode here
to characterize the thermodynamic state of the present flow field.

Table 3 provides values of the relative velocity and density fluctuations, urms/Ū 1

and ρrms/ρ̄, as well as the Ruθ correlation coefficient for the flow field before and after
the interaction with the shock wave. Values of Ruθ in the upstream region are between
−0.2 and −0.5. Under the strong Reynolds analogy (SRA) assumptions of Morkovin
this value should be Ruθ = −1. In the present work the assumption of negligible total
temperature fluctuations, which is part of the SRA theory, was not invoked. In that
respect it is not expected that the present correlations should be equal to −1.

The data of table 3 show that the relative velocity and density fluctuations are
amplified through the interaction although mean values of velocity and density change
through the interaction. There is also a decrease in Ruθ in the case of the finer grid
3 × 3 where scales are smaller than in the case of the 2 × 2 grid. In all cases, Ruθ
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Before interaction After interaction

No. Grid urms/Ū 1 ρrms/ρ̄ Ruθ urms/Ū 1 ρrms/ρ̄ Ruθ

1 2 × 2 0.029 0.0018 −0.5 0.066 0.0024 −0.54
2 2 × 2 0.0247 0.0024 −0.46 0.058 0.005 −0.6
3 3 × 3 0.0169 0.0031 −0.2 0.075 0.009 −0.32
4 3 × 3 0.013 0.0026 −0.3 0.0748 0.0098 −0.42

Table 3. Thermodynamic properties of flow before and after the interaction.

seems to increase after the interaction. The measured values of Ruθ in the downstream
region appear to be in the range of −0.2 to −0.54 found by Mahesh et al. (1997) for
interactions with shock wave strengths similar to the present ones.

The definitions of the mean and fluctuating Mach number can also be used to
extract the contributions of the thermodynamic properties of the flow:

M =M̄ +M ′ =
(Ū +u)

[γR(T̄ +θ)]1/2
=

(Ū +u)

[γRT̄ (1 + θ/T̄ )]1/2
=

(Ū + u)

[γRT̄ ]1/2

[
1 − 1

2

ϑ

T̄
+ 3

8

ϑ2

T̄ 2
+ . . .

]
.

After ignoring higher-order terms and averaging, this expansion leads to the following
relation for the mean Mach number:

M̄ =

[
1 − 1

2
Ruϑ

(
urms

Ū

)(
ϑrms

T̄

)
+ 3

8

ϑ2

T̄ 2

]
Mu (8.1)

where Mu is the flow Mach number upstream of the shock. The fluctuating part after
ignoring second-order and higher terms, appears to be:

M ′ =

[
u

Ū
− 1

2

(
ϑ

T̄

)]
Mu.

The last equation can provide the variance of Mach number fluctuations as

M
′2 =

[
u2

Ū 2
− Ruϑ

(
ϑrms

T̄

)(
urms

Ū

)
+ 1

4

ϑ2

T̄ 2

]
M2

u.

or in terms of Mt = urms/[γRT̄ ]1/2

M
′2 =

[
1 − Ruϑ

(
ϑrms

T̄

)/(
urms

Ū

)
+ 1

4

ϑ2

T̄ 2

/
u2

Ū 2

]
M2

t . (8.2)

The above relations reveal that the fluctuating Mach number does not only depend
on the individual fluctuating velocity and thermal fields but also on their coupling
through their correlation Ruθ . The two terms which contain the correlation Ruθ in
relations (8.1) and (8.2) in principle can change sign depending on the sign of Ruθ .
In the present cases all measured values of Ruθ are negative and therefore the final
contribution of these terms is positive.

Each of the contributing terms appearing in both (8.1) and (8.2) has been computed
from the experimental data obtained and the results are shown in table 4. The last
two terms of (8.1) are of the order of 10−6 and consequently their contributions are
extremely minimal. Therefore M̄ = Mu is valid to a very good approximation. The
two terms in the fluctuating Mach number relation (8.2) appear to be of the order of
10−2 and 10−3 with the term involving Ruθ being the most dominant. This results in
values of the ratio M ′

rms/Mt of between 1.015 and 1.034 in the upstream region and
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u2
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No. Grid (× 103) (× 103) (× 103) (× 103)

1 2 × 2 31 0.963 1.015 19.7 0.33 1.012
2 2 × 2 44 2.360 1.022 51 1.85 1.026
3 3 × 3 36 8.4 1.021 38.4 3.6 1.020
4 3 × 3 60 10 1.034 55.0 4.3 1.029

Table 4. Values of thermodynamic quantities appearing in Mach number relation of flow
before and after the interaction.

slightly less in the downstream region. Thus these thermodynamic terms change M ′
rms

from 1.5% to 3.4%.

9. Vorticity and enstrophy in the flow field
A better understanding of the nature of the interaction of turbulent structures and

vortex motions of turbulent flows with shock waves requires information on important
quantities like vorticity, rate-of-strain tensor and its matrix invariants, and dissipation
of turbulent kinetic energy. These flow quantities, although computationally as well
as experimentally demanding, when resolved to proper scales are therefore well-suited
for describing physical phenomena in vortical flows. One of the fundamental questions
is how vorticity is transferred through shock waves. Ribner (1953) considered the case
as a vorticity wave, which is transmitted through the shock according to Snell’s law.
In the present work, however, the transport equations of vorticity and enstrophy
will be used to gain further insight into the processes involved in the interactions of
shock waves with turbulence by looking at the instantaneous signals of the various
quantities involved. The transport equation of vorticity

DΩi

Dt
= SikΩk − ΩiSkk + εiqη

1

ρ2

∂ρ

∂xq

∂p

∂xη

+ εiqη

∂

∂xq

(
1

ρ

∂τηj

∂xj

)
(9.1)

describes four dynamically significant processes for the vorticity component Ωi ,
namely stretching or compression and tilting by the strain Sik , vorticity generation
through dilatation, baroclinic generation through the interaction of pressure and
density gradients, and viscous effects expressed by the viscous stress term. The term
SikΩk consists of one stretching or compression component and two tilting compo-
nents. This term presumably plays an important role in the various processes involved
which is not yet fully understood. The viscous term may also describe reconnection
of vortex lines at very small scales due to viscosity. If the viscous term can be ignored
since its magnitude, very often, is small, then the change of vorticity of a fluid element
in a Lagrangian frame of reference can be entirely attributed to vortex stretching
and/or tilting, to dilatational effects and to baroclinic torque.

If (9.1) is multiplied by Ωi then the transport equation for the enstrophy 1
2
ΩiΩi

can be obtained:

D
(

1
2
ΩiΩi

)
Dt

= SikΩkΩi − ΩiΩiSkk + εiqη

1

ρ2
Ωi

∂ρ

∂xq

∂p

∂xη

+ εiqη

∂

∂xq

(
Ωi

1

ρ

∂τηj

∂xj

)

− εiqη

1

ρ

∂Ωj

∂xq

∂τηj

∂xj

. (9.2)
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The physical meaning of the terms associated with the time-dependant changes of
enstrophy of a fluid element in a Lagrangian frame of reference are similar with those
responsible for the generation or destruction of vorticity. The physical mechanisms
involved in these complex processes are not fully understood. Enstrophy is a very
significant quantity in fluid dynamics because it is not only related to the solenoidal
dissipation, but also to several of the invariants of the strain-of-rate matrix Sij , which
may lead to detection of vortex tubes and shear layers in the flow field. In addition,
enstrophy is a source term in the transport equation of dilatation Skk:

DSkk

Dt
= −SikSki + 1

2
ΩkΩk +

1

ρ2

∂ρ

∂xk

∂p

∂xk

− 1

ρ

∂2p

∂xk∂xk

+
∂

∂xk

(
1

ρ

∂τkq

∂xq

)
. (9.3)

This transport equation describes the change of dilatation along a particle path
which can be caused by the straining action of the dissipative motions (SikSik) as
well as by the rotational energy of the spinning motions as it is expressed by the
enstrophy 1

2
ΩiΩi . Pressure and density gradients as well as viscous diffusion can also

affect dilatation. It should be noted that the above transport equation reduces to the
well-known Poisson equation for incompressible flows of constant density (Skk = 0).

Figures 10(a) and 10(b) show signals of longitudinal velocity component U1, lateral
velocity component U3, longitudinal and lateral vorticity components Ω1 and Ω2,
dilatation Skk = (1/v)Dv/Dt = −(1/ρ)Dρ/Dt , dilatational dissipation Ed = SkkSkk , en-
strophy ΩiΩi and various terms associated with the stretching of vortex lines. Each
signal has been normalized by its r.m.s. value upstream of the interaction. As a result
signals with relatively large fluctuations are reduced and signals with relatively small
fluctuations are expanded. Thus all signals have been brought to about the same
amplitude level. This normalization also helps to determine whether the signal of
the particular quantity is amplified or not after the interaction by observation and
comparison of the respective scale of fluctuations. The level of amplification is deter-
mined by the gain, G, which is defined in terms of a representative variable Q as the
ratio GQ = Qrms,d/Qrms,u where the superscripts u and d denote regions upstream and
downstream of the interaction respectively.

Each of the signals, with the exception of that of U1, has been displaced by multiples
of 10 r.m.s. units to allow better visibility. The shock wave location is evident on the
longitudinal velocity signal where its value drops substantially. An inspection of the
level of fluctuations after the passage of the shock and actual computation of their
r.m.s. values indicates that some signals are amplified and some not. The longitudinal
vorticity Ω1 and lateral velocity U3 signals are only slightly affected by the interaction.
The computed data of this case show a 2% to 5% reduction in the r.m.s. values
which indicates, within the experimental uncertainty, no significant changes in the
transmission of Ω1 and U3 through the shock. Longitudinal velocity fluctuations and
lateral vorticity fluctuations Ω2 are substantially amplified through the interaction
with gains of about 1.3. This characteristic is clearly demonstrated in figure 10(c)
where the probability of appearance of lateral vorticity fluctuations upstream and
downstream of the shock wave is plotted. These data show a substantially wider range
of Ω2,d fluctuations than that of Ω2,u.

Fluctuations of enstrophy ΩkΩk also show gains of the order of 1.1 to 1.5. Fig-
ure 11(a) shows the probability distributions of enstrophy fluctuations upstream and
downstream of the shock regions for the case of the 2 × 2 grid with mesh size
M = 12.7 mm. Data from experiments with two different shock strengths are plotted
in this figure. The results of both experiments indicate higher enstrophy amplifications
in the downstream regions. Similar behaviour is shown by the results obtained in the
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Figure 10. Time-dependent signals of (a) various quantities and (b) stretching/compression
or tilting terms during an interaction with a shock wave of strength Ms = 1.104. (c) Probability
plots of lateral vorticity fluctuations Ω2,u and Ω2,d , upstream and downstream of the shock
respectively.
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M,= 12.7 mm, 3 × 3 grid: M = 8.5. Solid lines, upstream; dashed lines, downstream.

experiments with the 3 × 3 grid with M =8.5 mm, which are shown in figure 11(b).
One common feature in the distributions of probabilities in all experiments shown in
figures 11(a) and 11(b) is their long tails that suggests the existence of some rare events
with large amplitude, which may play an important role in the processes of turbulent
kinetic energy dissipation. The data show that the shock interaction starts to affect
these high-amplitude events first. This is the first evidence that more high-amplitude
events are present after the interaction.

Long tails in the probability distributions are also evident in the case of dilatational
dissipation data SkkSkk , which are plotted in figures 11(c) and 11(d) for the 2 × 2
and 3 × 3 grids respectively. In the case of the 2 × 2 grid these data show a clear
enhancement of SkkSkk fluctuations downstream of the interaction in both experiments
with different shock strengths. In the case of the 3 × 3 grid, the data in figure 11(d)
also show an enhancement in the levels of SkkSkk after the interaction.

A closer look at the enstrophy and dilatational dissipation signals displayed in figure
10(a) reveals a strong intermittent behaviour which is characterized by bursts of high-
amplitude events, which sometimes reaches values of up to 8 r.m.s. units followed by
less violent time periods. It should be mentioned that fluctuations of dilatation Skk

are very small in this experiment, only 10% of the fluctuations of vorticity. These
values are typical in flows with low fluctuations of Mach number. Consequently
baroclinic vorticity generation is negligible since pressure fluctuations are also small.
Thus the only source of vorticity change, in addition to viscous diffusion, is through
the stretching or compression and tilting term SikΩk . Signals of various terms of
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Figure 12. (a, b) Probability distributions of the stretching/compression term in the longi-
tudinal direction, S11Ω1 and S13Ω3, before and after the interaction. (c) Probability distributions
of the stretching/compression or tilting vector in the longitudinal direction, S1kΩk , and dilata-
tional stretching/compression SkkΩ1 before and after the interaction (d) Probability distribu-
tions of the stretching/compression term in the longitudinal direction, S22Ω2, before and after
the interaction. Mu = 0.308, Ms = 1.04, 2 × 2 grid with M = 12.7 mm.

this quantity have been displayed in figure 10(b). They are also characterized by an
intermittent behaviour with periods of weak activity followed by bursts of strong
activity. A further look into the components of this vector indicates that the level of
fluctuations of the terms S11Ω1, S22Ω2 and S33Ω3, which are the terms indicating vortex
stretching or compression, changes substantially. Downstream of the interaction,
the term S11Ω1 increases while S22Ω2 and S33Ω3 decrease. As will be shown later in
table 5 the first term increases because S11 increases substantially in the down-
stream region, although Ω1 exhibits minor changes through the interaction. Fig-
ure 12(a) shows the probability distributions of S11Ω1 before and after the interaction.
Both distributions are characterized by long tails that are indicative of rare events
of important dynamic significance. The range and distribution of the fluctuations are
larger in the downstream region than upstream. It should be mentioned here that
the time-average values of all velocity gradients and therefore of Sij and Ωk practically
vanish everywhere in the present flow except within the shock wave where several
of the gradients, particularly in the longitudinal direction, reach values different from
zero. In that respect, compression of vortex lines in the time-average sense is expected
to take place only within the shock wave where S11Ω1 is expected to be non-zero.
One of the most interesting features of vorticity as a quantity describing a flow field is
that the level of fluctuations is large and very often an order of magnitude larger
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than its time-average values even in flows which are highly inhomogeneous (see
Andreopoulos & Honkan 2001). In the present case, the r.m.s. level of S11Ω1 fluctua-
tions increases in the downstream region although its time-average is zero. A sub-
stantially larger increase in the r.m.s. values has been observed in the case of S12Ω2

and S13Ω3, which are part of the source/sink term indicating tilting of vortex lines.
Figure 12(b) shows the probability distributions of the fluctuations of S13Ω3 before and
after the interaction. Long tails are also evident here. The probability distributions of
the resultant component of the stretching vector in the longitudinal direction S1kΩk =
S11Ω1 + S12Ω2 + S13Ω3 before and after the interaction are shown in figure 12(c).
It appears that the level of these fluctuations increases after the interaction. The
source/sink terms in the transport equation of vorticity (9.1) contain contributions
from the dilatation term SkkΩi . Probability distributions of the fluctuations of SkkΩ1

are also shown in figure 12(c). They are substantially lower than the corresponding
values of S1kΩk and they increase after the interaction.

A notably different behaviour than that described above has been observed in the
level of fluctuations of the stretching/compression term in the lateral directions x2 and
x3. These fluctuations decrease after the interaction. This is evident in the probability
distributions of S22Ω2 shown in figure 12(d). The measured r.m.s. indicated a reduction
of about 30%.

Clearly, compression by the shock wave reduces the level of vorticity fluctuations
associated with the so-called mechanism of vortex line compression in the lateral
direction and increases it in the longitudinal direction. Tilting of vorticity components
by the action of the shear Sik increases through the interaction by various amounts
on each of the three vorticity components so as to compensate for the deficit caused
by the vortex line compression. Thus the complete stretching term increases after the
shock.

10. Dissipation rate of turbulent kinetic energy
The instantaneous dissipation rate of turbulent kinetic energy q2 = 1

2
UiUi converted

into thermal/internal energy is given by

E = τijSij = 2µSijSij − 2

3
µ

∂Uk

∂xk

∂Um

∂xm

. (10.1)

It appears in the transport equation of q2as a sink term and as a source term with
positive sign in the transport equation for internal energy and entropy. The second
term on the right-hand side of (10.1) represents the additional contribution of com-
pressibility to the dissipation rate of kinetic energy. This term disappears in the cases
of incompressible flows. Since this term is always positive, the negative sign in front
may erroneously suggest that compressibility reduces dissipation. This is incorrect
because the term SijSij also contains contributions from dilatation effects, which can
be revealed if one considers that

SijSij = 1
2
ΩkΩk +

∂Ui

∂xj

∂Uj

∂xi

. (10.2)

The second term on the right-hand side represents the inhomogeneous contribution
in the case of incompressible flows. In the case of compressible flows, terms related to
dilatation can be extracted, and the instantaneous total dissipation rate then becomes

E = µΩkΩk + 2µ

[
∂Ui

∂xj

∂Uj

∂xi

− SkkSkk

]
+ 4

3
µSkkSkk. (10.3)



170 J. H. Agui, G. Briassulis and Y. Andreopoulos

The third term on the right-hand side describes the direct effects of compressibility, i.e.
dilatation, on the dissipation rate. The first and the last terms on the right-hand side
of (10.3) are quadratic with positive coefficients and positive signs and they are,
therefore, always positive. The second term on the right-hand side indicates the contri-
butions to the dissipation rate by the purely non-homogeneous part of the flow. Its
time-averaged contribution disappears in homogeneous flows. This term, in principle,
can attain negative values and thus it can reduce the dissipation rate. This does not
violate the second thermodynamic law as long as the total dissipation remains positive
at any point in space and time.

E can be decomposed into a solenoidal part Es , which is the traditional incom-
pressible dissipation, and a dilatational part Ed . In this case E = Es + Ed with

Es = µΩkΩk + 2µ

[
∂Ui

∂xj

∂Uj

∂xi

− SkkSkk

]

and Ed = 4/3µSkkSkk . We can further define for convenience

ER = µΩkΩk, Eh = 2µ

[
∂Ui

∂xj

∂Uj

∂xi

− SkkSkk

]
and Eq =

∂Ui

∂xj

∂Uj

∂xi

.

Figure 13(a) contains signals of the various components of the total dissipation E

discussed above with values divided by µ. All the components have positive values at
all times with the exception of the inhomogeneous part

Eh

2µ
=

[
∂Ui

∂xj

∂Uj

∂xi

− SkkSkk

]
,

which alternates between positive and negative values. Its time-average is zero, as
expected in this isotropic flow, but instantaneously it can reach values that are non-
negligible. In that respect it can reduce the value of the solenoidal dissipation, Es and
therefore reduce E, which, however, never becomes negative. The fact that the present
data indicate always positive values of E provides some reliability in the quality of
the measurements and allows confidence in further using these data.

The relation between enstrophy and dissipation rate is of great interest. Figure 13(b)
shows a scatter plot of enstrophy and dissipation rate data upstream and downstream
of the interaction. The density of the scattered data points is equivalent to the joint
probability between these quantities. The most probable values are located close to
the point (5 × 106, 6 × 106) upstream of the interaction region. However, of interest are
events with large values of either or both of these quantities, which although having
low probability of appearance are indicative of significant dynamical processes. Large
values of enstrophy and dissipation rate may be associated with the existence of local
shearing. Events with low values of enstrophy and large values of dissipation rate are
indicative of irrotational dissipation, while events with high values of enstrophy and
low values of dissipation rate are indicative of the existence of vortex tubes in the
flow.

The data of figure 13(b) indicate that dissipation dominates the flow motions more
than enstrophy. This is evident if one compares values of dissipation and enstrophy at
locations of about the same point density. The present data show some weak activity
of non-dissipative vortex tubes while substantial irrotational dissipative motions can
be observed. Downstream of the interaction, the ranges of both quantities increase.
Events indicative of non-dissipative vortex tubes and irrotational dissipative motions
are more intense in this region than upstream of the shock. There is also a significant
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Figure 13. (a) Signals of total dissipation, E/µ; solenoidal dissipation, Es/µ; dilatational
dissipation, Ed/µ; inhomogeneous contribution, Eh/2µ= [(∂Ui/∂xj )(∂Uj/∂xi) − SkkSkk] and

enstrophy. Signals are displaced by 0, 150, 200, 300 and 350 s−2 units respectively. Velocity U1

signal is in m s−1 and it displaced by 400 s−2 units. (b, c) Scatter plots of enstrophy, ΩkΩk and
dissipation, E/µ data in (b) and Ed/µ in (c), upstream and downstream of the interaction
with a shock wave of Ms = 1.104. Downstream data have been displaced by 150 units in (b)
and 20 units in (c).

increase in the number of events with intense rotational and dissipative motions,
which suggest the existence of isolated vortices or shear layers.

Scatter plots of enstrophy and dilatational dissipation data upstream and down-
stream of the interaction are shown in figure 13(c). Compressibility effects are not
strong in the present flows. Rotational activities dominate the flow processes over
dilatational effects. Most of these strong activities are associated with small but not
negligible dilatational dissipation.

As was demonstrated in figure 13(a) the inhomogeneous part of the solenoidal dis-
sipation, Eh, is not negligible during these dynamically significant processes although
its time-averaged effect is zero. Large-amplitude fluctuations, for instance, may be
associated with the passage of individual vortices or strong shear layers, which could
also be associated with high-enstrophy and high-dissipation events. Figure 14(a)
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Figure 14. (a) Probability distributions of homogeneous dissipation Eh/µ upstream and
downstream of the interaction with a shock wave of Ms = 1.104. (b) Return-to-isotropy data
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downstream of the interaction. Values downstream of interaction are displaced by 50 units.

shows the probability distribution of Eh values before and after the interaction. The
distribution of data of the downstream region is characterized by larger-amplitude
fluctuations and higher probabilities than the upstream data. This behaviour may
suggest that the flow downstream of the interaction may be substantially less isotropic
than the upstream flow. The time-averaged value of Eh is rather small in comparison
to the other components of dissipation. The fact, however, that the shock wave which
is causing the interaction is an axisymmetric disturbance and that the incoming flow
is isotropic suggests that the outcome flow is non-isotropic. On the other hand, there
is a tendency to return to isotropy by the action of pressure fluctuations. In order to
find out when the return to isotropy takes place, the quantity Eh has been used as an
indicator and its time-average value

Eh,av =
1

T

∫ Te

Tst

Eh(t) dt

has been computed for various values of Tst , which is the time of starting the inte-
gration. Most of the events contributing to anisotropy are expected to be present
immediately after the passage of the shock wave and therefore the return to isotropy
can be determined by fixing the upper limit of the integration, Te, and varying the
lower limit Tst . The results are shown in figure 14(b). Ideally, Eh,av should be zero in
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a perfectly isotropic flow. In the present case, Eh,av decreases fast when the shifting
of Tst starts and after about 0.2 ms reaches a level with a constant value of about
0.23 × 106 s−2. It is therefore believed that the return to isotropy process has been
completed within 0.2 ms. This time is considered reasonably short and it represents a
rather small fraction of the duration of useful data downstream of the shock wave.
In that respect, the reduced integration time/number of samples has no impact on
the statistical averages.

Finally the quantity −SikSki +
1
2
ΩkΩk is of interest because it is one of the

source/sink terms appearing in the transport equation of Skk (9.3). It is related
to Eq as

Eq =
∂Ui

∂xj

∂Uj

∂xi

= SijSij − 1
2
ΩkΩk.

Since it has been argued that baroclinic effects before and after the interaction are
negligible, Eq and the pressure hessian term, −(1/ρ)(∂2p/∂xk∂xk), are controlling the
change in dilatation along a particle path if viscous effects are also negligible. The
term itself indicates whether straining or rotational activities dominate the dyna-
mical processes. The relation of Eq to enstrophy has been further explored by consi-
dering their scatter plot data shown in figure 14(c) for the regions upstream and
downstream of the shock. Two lines with slopes −1/2 and 0 bound the data plotted
in this figure. Positive values of Eq suggest that flow-straining activities dominate the
local processes more than rotation. The time-average value of Eq is small but its
instantaneous fluctuations can burst to about 30 times larger values.

The region upstream of the shock is characterized by events of high positive Eq and
low rotational activities where straining is dominant and by events of large negative
Eq values and high enstrophy. Events of large values of both Eq and enstrophy are
rather scarce. On the contrary, events with high positive Eq and high ER are plentiful
downstream of the interaction region. Straining activities are more dominant in these
cases.

In general, if the contributions of the pressure hessian term are not considered, posi-
tive Eq is expected to cause a decrease in Skk and therefore a decrease in the specific
volume, i.e. compression, since Skk = (1/v) Dv/Dt . If Eq is negative, i.e. events with high
rotational activities are dominant, then flow expansion may take place temporarily.

The alignment between the velocity and vorticity vectors and its relation to the dis-
sipation rate is of interest. Helicity is defined as the scalar product between the velocity
and vorticity vectors, h = U · Ω = |U | |Ω | cos θh where θh is the angle between the two
vectors U and Ω . According to Moffatt (1969) the volume integral of h is invariant
under certain flow conditions. The mean value of h is evidently zero if the isotropic
turbulence possesses the reflectional symmetry property. In a purely solenoidal flow
this vector product should be zero since the two vectors are always orthogonal. Fig-
ure 15(a) shows probability distributions of helicity obtained from the time-dependent
data of two different experiments with the 2 × 2 grid. The distributions are quite
narrow and spiky with long tails and with mean and most probable values very close
to zero. The range appears to be wider in the downstream region indicating higher
fluctuations of helicity. Thus mean helicity is not affected by the interaction with the
shock while its r.m.s. value increases after the interaction.

Values of cos θh have been computed and their probability distributions are shown
in figure 15(b). The distribution is flat within 1% in the range −0.9 < cos θh < 0.9
which corresponds to 25◦ <θh < 155◦ and it increases beyond this range suggesting
that the two vectors tend to be parallel. The distributions upstream of the shock
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Figure 15. (a) Probability distributions of helicity in various interactions with the 2 × 2 grid.
(b) Probability plots of alignment angle between velocity and vorticity vectors in the case of
the 2 × 2 grid with M =12.7mm. Solid lines, upstream values; dotted lines, downstream values.
(c, d) Scatter plots of enstrophy or rotational dissipation ER/µ= ΩkΩk and helicity density (c)
upstream and (d) downstream of the interaction, in the case of the 2 × 2 grid with Mu =0.308
and Ms = 1.04.

wave region show no asymmetry and their average appears to be close to θh ≈ 90◦.
However the upward trend near the edges of the distribution is indicative of a minor
lack of reflectional symmetry that has been also observed in low-speed isotropic flows
(see Tsinober, Kit & Dracos 1992). This may be due to the fact that cos θh is not a
Galilean invariant because it involves the total velocity vector in the computations.
In a purely isotropic turbulence, cos θh is Galilean invariant. Probability distributions
of cos θh for an observer moving with the mean flow on a Galilean-invariant frame
are also shown in figure 15(b). Distributions both before and after the interaction
appear to be reasonably constant with values falling towards the edges. Thus, there
is no preferential alignment between velocity and vorticity fluctuations, a conclusion
in agreement with the work of Wallace, Balint & Ong (1992).

The lack of constant probability distribution may be interpreted by considering
the classical decomposition of the velocity field into a solenoidal contribution and
a potential part. The lack of symmetry in the measured distribution may indicate a
large influence of the potential part while in highly vortical regions the solenoidal
contribution dominates over the potential part, reducing the degree of asymmetry. A
closer look into the time-dependent signals of the three components of helicity UiΩi

indicated that during events with high or low values of one of the two quantities Ui or
Ωi , the other one crosses the zero level resulting in values of helicity very close to zero.



Interactions of a propagating shock wave with decaying grid turbulence 175

Downstream of the interaction the trend of the preferential orientation between U
and Ω vanishes and the probability distributions are more evenly distributed across
all angles.

The relation between the rotational dissipation rate ER = µΩkΩk and helicity h can
be depicted by considering the scatter plots between h and ER/µ shown in figures 15(c)
and 15(d). It appears that weak or moderate rotational dissipation rate ER/µ is evenly
distributed across all orientation angles before the interaction. Events with high values
of dissipation rate occur when the orientation between vorticity and velocity is 0◦

and 180◦. In the region downstream of the interaction, however, dissipation with
moderate or low values appears to take place during all orientations with some weak
preference towards the 0◦ value. Significantly more events at high dissipation rates
were observed occurring at various angles or bands of alignment angles about 45◦, 90◦

and 155◦.
The dynamically important alignment between the vorticity vector Ω and its stretch-

ing vector W with components W1 = S1kΩk , W2 = S2kΩk and W3 = S3kΩk , is also of
interest. If ϕs is the angle between Ω and W then cosϕs =Ω · W/|Ω | |W |. The scalar
product Ω · W is of particular importance because Ω · W =ΩiSikΩk is the source term
in the transport-of-enstrophy equation (9.2). If this equation is time-averaged then
this term is the most dominant among the terms appearing in the resultant equation
since it is cubic in the velocity derivatives that are substantial in small scales. The
advective term is usually small and in the case of incompressible flow this term coun-
terbalances the viscous destruction term directly, which is always positive. In that
respect and in the time-average sense this term should be always positive, and therefore
it can be concluded that vortex stretching or tilting always amplifies enstrophy of
small-scale turbulence. Batchelor & Townsend (1947) linked this quantity to the skew-
ness of the velocity derivative ∂U1/∂x1. The importance of the positiveness of this
term is somewhat overstated (see for instance Tsinober et al. 1992) because it is a
result of time-averaging the transport equation that completely masks the dynamically
significant processes involved. The r.m.s. value of this quantity is much larger than
its mean. Positive or negative excursions of this term with amplitude up to 300 times
its mean are common (see Andreopoulos & Honkan 2001). Thus negative values
suggesting simply a reduction in enstrophy are not in violation of any physical law.
In addition, the assumptions involved in deriving this argument ignored completely
the advection term and the coupling between mean flow and turbulence. This would
be justified only in extremely high-Reynolds-number isotropic turbulent flow.

Typical probability distributions of the term ΩiSikΩk are shown in figure 16(a) for
only one experiment. The distributions are narrow with long tails. In the upstream
region the range is between −2.5 × 105 and 2.0 × 105 with mean at 1500 s−3. Down-
stream of the interaction region the mean value is about 750 s−3, while the range and
therefore the level of fluctuations increased by 60%.

Probability plots of cos ϕs are shown in figure 16(b) for two different interactions
with the 2 × 2 grid. In almost all the cases the most probable values of cosϕs are
close to the edges of the distributions, suggesting that the two vectors tend to be
parallel to each other and in the same or opposite directions. The not unusual lack of
symmetry found in the experiments of Tsinober et al. (1992) is also found here. This,
however, is a genuine feature of the distribution because it is related to a non-zero
average value of ΩiSikΩk and it cannot be attributed to breakdown of symmetry.

The scatter plots between the dissipation rate ER and cosϕs shown in figure 16(c)
indicate that ER is evenly distributed across all orientation angles during events
with low values of ER . Vorticity and stretching vectors are parallel and in the same
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Figure 16. (a) Probability distribution of the enstrophy generation term ΩiΩkSik upstream
and downstream of the interaction with the 2 × 2 grid. (b) Probability plots of alignment
between vorticity and its stretching vector in the case of the 2 × 2 grid with M = 12.7 mm.
Solid lines, upstream values; dotted lines, downstream values. (c, d) Scatter plots of enstrophy
or rotational dissipation ER/µ= ΩkΩk and cosϕs of the relative orientation between vorticity
and stretching vectors (c) upstream and (d) downstream of the interaction in the case of the
2 × 2 grid with Mu =0.308 and Ms = 1.04.

direction during events with substantial dissipation rate of kinetic energy. In the
downstream region (see figure 16d) high and low values of dissipation are almost
evenly distributed across the entire range of angle alignment. Low values of ER ,
however, occur more when the two vectors are in the same or opposite directions.

The orientation between the vorticity vector Ω and its dilatational stretching vector
W d with components Wd,1 = −SkkΩ1, Wd,2 = −SkkΩ2 and Wd,3 = −SkkΩ3, can be ex-
pressed as cosϕd = Ω · W d/|Ω | |W d |. This scalar product is also of significance because
it is the source term −ΩiΩiSkk in (9.2). It appears that cosϕd = −1, which indicates
that the two vectors are always in the opposite direction.

11. Turbulence length scales
One of the unresolved issues related to the present flow case is the behaviour of

length scales downstream of the interaction. There is some disagreement between
experimental results and DNS data on how the various length scales of turbulence
are affected by the interaction with the shock wave. The DNS data of Lee et al.
(1993) and Hannappel & Friedrich (1995) indicate that all characteristic length scales,
namely longitudinal and lateral velocity integral length scales, longitudinal velocity
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Figure 17. Time-dependent longitudinal velocity signals obtained with the hot-wire rake.
Signals are displaced by multiples of 0.25 from each other. Mu = 0.564, Ms = 1.39.

microscale, dissipation length scale, as well as integral length scale and microscale of
density fluctuations, decrease through shock interactions. The experimental data of
Keller & Merzkirch (1990) show that the density microscale increases across the shock.
Hannappel & Friedrich (1995) also show that the reduction in the Taylor’s microscales
parallel to the shock front is weaker by a factor of 2 when the compressibility
level of the incoming turbulence is high. On the other hand, the dissipation length
scale in the experiment of Honkan & Andreopoulos (1992) was also found to
increase after the interaction. DNS results of Lee et al. (1994) have indicated a small
increase of dissipative length scales through weak shock interactions. Thus, there is
no agreement among various researchers on how shock interactions affect the length
scales. Intuitively, one would expect that compression should reduce length scales.

In an effort to resolve the disagreement between experiments and DNS, detailed
space–time correlation measurements were carried out by using a rake of six parallel
wires and three temperature wires separated from each other by �ξ2 = 1 mm. In order
to estimate the integral length scales in the longitudinal ξ1 direction and normal ξ2

direction values of the cross-correlation coefficient

rij (x, ξk) = ui(x)uj (x + ξk)
/(

u2
i (x)

)1/2(
u2

j (x + ξk)
)1/2

were obtained by two-point measurements in the ξ2 direction and from auto-correla-
tions after invoking Taylor’s hypothesis in the ξ1 direction. Thus with U 1 = ξ1τ it
appears that

L11(x1) =

∫ ∞

0

r11(x1, ξ1) dξ1 = U 1

∫ ∞

0

r11(x1, τ ) dτ .

Typical signals obtained with the hot-wire rake are shown in figure 17 for one shock
interaction with turbulence produced by the 3 × 3 grid with mesh size M = 8.5mm.
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Figure 18. (a, b) Longitudinal integral length scales along the flow field (a) upstream and (b)
downstream of the shock wave at different strengths of the interaction. (c) Ratio of the longi-
tudinal integral length scale GL11 = L11,d (ξi)/L11,u(ξ1) for various strengths of the interaction.
(d) Spatial correlations in the lateral direction for various strengths of the interaction. Data
obtained at x/M = 45 with the 5 × 5 grid with M = 5.1 mm. (e) Spatial correlations in the
lateral direction for the case of the interaction with Mu = 0.6 and Ms = 1.39. Data obtained at
different locations with three different grids. Filled symbols, upstream of the interaction; open
symbols, downstream of the interaction. in (d) and (e).

All values of the signals have been non-dimensionalized by the mean velocity in the
longitudinal direction upstream of the interaction. The six signals appear reasonably
correlated with each other. Cross- and auto-correlation functions were estimated from
the time-dependent data for various cases. Integration of the correlation function was
carried out numerically. The results are shown in figures 18(a) and 18(b) where data
of the longitudinal integral length scale L11 are plotted for upstream and downstream
of the interaction regions respectively. There exists some scatter in the data in each
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particular case, which is attributed to the various grids used. No attempt has been
made to extract any ReM effects since no clear trend or pattern among the data
obtained could be identified. From the data of figure 18(a), it can be seen that the
integral length scale L11,u(ξ1) increases with downstream non-dimensional distance
x/M for all investigated cases before the interaction. It is also evident that L11,u(ξ1)
in the case Mu = 0.475 is higher than in the case Mu = 0.36. However when the flow
Mach number increases to Mu = 0.6 and therefore stronger compressibility effects are
present, then the values of the integral length scale drop.

Downstream of the interaction with the shock wave the distribution of L11,d(ξ1) is
more complicated. All the scales decrease with x/M and they are reduced considerably
from their upstream values. However the reduction of the larger scales is greater. This
is better shown in figure 18(c) where the attenuation ratio GL11 =L11,d(ξ1)/L11,u(ξ1)
is plotted against x/M . At large x/M where the initial scales were the largest the
reduction is dramatic. Thus once again it is found that amplification or attenuation is
not the same for all initial length and velocity scales. It is interesting to observe that
the stronger the shock strength the greater the attenuation of the longitudinal length
scales. In this case, for instance, L11 is reduced by 70% to 85% from its upstream value.

The two-point correlation r11(ξ2) of the longitudinal velocity fluctuations in the
lateral direction ξ2 is shown in figure 18(d). Because of the fixed separation between
the six hot wires not all the curves cross the zero line and therefore it is very difficult
to integrate them in order to obtain the classically defined length scale in the lateral
direction. However the slopes of these curves are indicative of their trend. It is rather
obvious that the length scales before interaction are reduced with increasing flow
Mach number. This behaviour is very similar to that of L11(ξ1). After the interaction,
however, the length scale L11(ξ2) increases in the first two cases and decreases in the
strongest interaction.

In order to investigate the effect of initial conditions on this correlation at the
highest flow and shock Mach number where the lateral scales are shown to reduce,
experiments with various grids were carried out. The data obtained shown in figure
18(e) indicate that the correlation increases substantially in the case of the finest
grid, 8 × 8 with the lowest Reλ, after the interaction for the range of length scales
investigated. However the coarser grid, the 2 × 2 grid with the highest Reλ = 737,
shows the greatest attenuation in the lateral integral scale of turbulence after the
interaction.

Thus, integral length scales in the longitudinal direction were reduced after the
interaction in all investigated flow cases. The corresponding length scales in the normal
direction increase at low Mach numbers and decrease during stronger interactions.
It appears that in the weakest of the present interactions, turbulent eddies are
compressed in the longitudinal direction drastically while their extent in the normal
direction remains relatively the same. As the shock strength increases the lateral
length scale increases while the longitudinal decreases. At the strongest interaction of
the present cases, the eddies are compressed in both directions. However, even at the
highest Mach number the issue is more complicated since amplification of the lateral
scales has been observed in fine grids. Thus the outcome of the interaction strongly
depends on the initial conditions.

The curvature of the cross correlation function rij at the origin defines the Taylor
microscale λik through the relation

[
∂2rii

∂ξ 2
k

]
ξk→0

= − 1

λik

.
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Although the number of data points in the vicinity of the origin is not adequate
for an accurate determination of the second derivative of rii(ξk) some qualitative
information can be deduced in reference to the behaviour of Taylor’s microscale. In
general values of λ11/M appear to decrease through the interaction while values of
λ12/M decrease only in strong interactions with coarse grids and increase in strong
interactions with fine grids or in weak interactions with any grid.

DNS results indicate a decrease in all lateral scales through a wide range of Ms .
In that respect the disagreement between the experimental data and DNS remains
an issue although it may be attributed to the difference in Reλ. The Reλ of the DNS
are between 12 and 22, which is considerably lower than the values between 150 and
1300 achieved in the experiments and may be the cause of this disagreement between
experiments and DNS.

The difference between experiments and DNS is also noticeable if the Reynolds
number ReT = (ρuiui)2/µε is considered, where ε the dissipation rate. ReT in the
experiments is of the order of 4 × 103 while in DNS is only 750. As a result the time
scale of turbulence Tt = q2/ε and its ratio to the time scale imposed by the shock
Tsw = 1/S11, Rt = Tt/Tsw , are quite different between DNS and experiments.

The present results clearly show most of the changes: either attenuation or ampli-
fication of quantities involved occur for large x/M distances where the length scales
of the incoming flows are large and turbulence intensities low. Thus eddies large in
size with low velocity fluctuations are affected the most by the interaction with the
shock.

12. Turbulence amplification through the interaction
Amplification of turbulence is one of the major features of shock–turbulence interac-

tions. Linear analysis predicts amplification of turbulence as long as fluctuations of
pressure, velocity and temperature upstream of the shock are sufficiently small that
shock front distortion is considered negligible, and the Rankine–Hugoniot conditions
can be linearized. DNS data for interactions with weak shocks (Lee et al. 1993;
Hannappel & Friedrich 1995) and Euler simulations (Rotman 1991) also predict am-
plification of turbulence. Almost all experiments confirm qualitatively this analytical
and computational result. The experiments of Jacquin et al. (1993) report no signi-
ficant enhancement of turbulent kinetic energy. In this case, however, the deceleration
in the flow upstream of the interaction because of the existence of Mach waves may
have contributed to overestimating the level of turbulence upstream of the interaction.
In the experimental work of Zwart, Budwig & Tavoularis (1997), a clear increase
in turbulent intensities is reported, which, however, was attributed to shock wave
unsteadiness.

Typically the amplification of turbulent fluctuations depends on the shock wave
strength, the state of turbulence of the incoming flow before the interaction, and its
level of compressibility.

Figure 19(a) shows the amplification ratio of the velocity vector fluctuations defined
as the ratio of the standard deviation of the fluctuations downstream of the interaction
σd to that upstream of the interaction σu, i.e. G = σd/σu. Data available for three
velocity components of various experiments are plotted against the corresponding
shock strength. The general trend of amplification can be depicted with the help of
a polynomial best-fit line through the data. Amplification of longitudinal velocity
fluctuations has been observed in all experiments. It appears that the amplification
increases in interactions with higher shock strength. The data for fluctuations in the
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Figure 19. (a) Amplification of the velocity vector fluctuations for various interactions. (b)
Amplification of the velocity vector fluctuations for various interactions with different time
scale ratios. (c) Amplification of Taylor’s microscales for various interactions.

lateral directions show no change or some minor attenuation through the interaction.
In an axisymmetric flow, like the present one downstream of the interaction, the
data in the two lateral directions should be identical. The data for the u2 and u3

fluctuations shown in this figure appear to be in reasonably good agreement with each
other. Any difference between them can be attributed to the inherent lower degree of
isotropy in the flow region downstream of the interaction, which in fact deteriorates
with increasing Ms , and to the uncertainties involved in the experimental data.

A more meaningful way to present the amplification data is to plot them against the
time-scale ratio Rt = Tt/Tsw , which was introduced in § 6, instead of Ms . The reason
is that Rt contains information regarding the incoming isotropic flow and the interact-
ing shock wave as opposed to Ms which is a characteristic representative of the shock
wave only. Specifically, it better describes the turbulence of the incoming flow, par-
ticularly the variation of its characteristics with downstream distance. The data re-
plotted are shown in figure 19(b). The general trend of the data remains the same as
that of figure 19(a). The fluctuations of u1 measured with a x-wire, which are shown in
figure 19(b), agree well with the corresponding data obtained with the vorticity probe.
They also indicate that amplification of longitudinal velocity fluctuations increases
with increasing Rt .

Of interest is the behaviour of the fluctuations of the velocity gradient tensor
Aij = ∂Ui/∂xj . Since two measurements of velocity Ui at close locations xj , xj + �xj

have been attempted the velocity gradient tensor can be estimated by �Ui/�xj where
�Ui = Ui(xj + �xj ) − Ui(xj ). According to the work of Honkan & Andreopoulos
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(1997) on the physics of the structure function, it appears that

[(
�Ui

�xj

)2]1/2

=

[
U 2

i (xj )
]1/2

�xj

[(1 − ru)
2 + 2ru(1 − rii)]

1/2 (12.1)

where

ru =

[
U 2

i (xj + �xj )

U 2
i (xj )

]1/2

and rii is the cross-correlation function

r = rii(�xj ) = Ui(xj )Ui(xj + �xj )
/(

U 2
i (xj )

)1/2(
U 2

i (xj + �xj )
)1/2

.

The above relation (12.1) indicates that the r.m.s. value of the quantity �Ui/�xj

depends among other quantities on (1 − ru) and (1 − rii). The first quantity is a mea-
sure of the inhomogeneity of the r.m.s. while the second one indicates the uncorrelated
part between the two velocity fluctuations at xj and xj + �xj . It can be argued that
for small separations �xj , ru does not vary significantly. In the lateral directions of
the present flow it remains 1 and in the longitudinal direction it changes slowly. For
instance, by considering equation (6.1) it appears that

r2
u =

[
1 +

�xj

xj − x0

]−n

.

For �xj = 1 mm and xj − x0 = 100 mm then ru obtains values close to 0.998. Therefore
it is very reasonable to assume that the term (1 − ru)

2 reaches very small values and
it can be ignored. This yields the following relation:

[(
�Ui

�xj

)2]1/2

=

[
U 2

i (xj )
]1/2

�xj

[2ru(1 − rii)]
1/2 (12.2)

which indicates that most contributions to �Ui/�xj come from the uncorrelated part
of the two velocity signals. It is known that the existence of small scales in the flow
decrease rii . On the other hand two sinusoidal signals with a phase shift will also
result in correlation coefficient rii lower than 1. Thus contributions to �Ui/�xj may
come from the high-wavenumber part of the spectrum or out-of-phase large eddies
in the low-wavenumber part.

The limit of equation (12.1) when �xj approaches zero is also of interest in the
present considerations because it represents the case with ideal spatial resolution
in the measurements of velocity gradient tensor. This limit should be compared to
equation (12.1) itself since it represents the actual practice in these measurements. As
�xj approaches zero, both ru and rii approach 1 and thus the limit appears to become
indefinite. After applying L’ Hospital’s rule, the following relation can be obtained:

(
�Ui

�xj

)2

�xj →0

=

[
U 2

i (xj )
]

λ2
ij

[
1 + λ2

ij

(
∂ru

∂�xj

)2]
(12.3)

where λij is Taylor’s microscale.
Thus this limit determines the highest attainable value under an ideal probe

resolution. The second term in the square bracket of this equation can attain values
that depend on the location xj and direction �xj . In general this ratio is smaller than 1
and in most cases it can be neglected. For instance in the lateral direction of the
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σd/σu Ms = 1.04 Ms = 1.10 Ms = 1.15 Ms = 1.19

(du1/dx1)
′ 1.7 1.86 1.5 1.93

(du2/dx1)
′ 1.5 1.32 1.14 1.28

(du3/dx1)
′ 1.61 1.54 1.35 1.6

(du1/dx2)
′ 0.85 1.06 0.84 0.96

(du2/dx2)
′ 0.74 0.84 0.65 0.7

(du3/dx2)
′ 0.98 0.91 0.82 0.78

ω′
1 0.88 0.95 0.8 0.78

ω′
2 1.26 1.40 1.10 1.38

ω′
3 1.24 1.17 1.12 1.10

ωkω
′
k 1.10 1.29 0.93 1.02

skks
′
kk 1.37 1.41 1.60 1.29

s ′
kk 1.51 1.12 1.18 1.02

s11ω
′
1 1.26 1.14 1.06 1.61

s12ω
′
2 1.79 1.29 1.10 1.75

s13ω
′
3 1.80 1.48 1.34 1.77

s21ω
′
1 1.32 1.48 1.12 1.22

s22ω
′
2 0.86 0.74 0.73 1.02

s23ω
′
3 1.05 0.95 0.73 1.05

s1kω
′
k 1.30 1.19 1.15 1.64

s2kω
′
k 1.02 0.88 0.88 1.06

s3kω
′
k 1.07 1.14 0.9 1.24

skkω
′
1 1.25 1.01 0.92 1.06

skkω
′
2 1.73 1.60 1.18 1.79

skkω
′
3 1.73 1.36 1.28 1.59

Table 5. Data of amplification of r.m.s. of fluctuations of various turbulent quantities.

present flow it is zero while in the longitudinal direction it is of the order of 10−2 to
10−3.

In cases where this term can be omitted then (12.3) becomes

(
�Ui

�xj

)2

�xj →0

=

[
U 2

i (xj )
]

λ2
ij

(12.4)

If Ui is replaced by its fluctuating part ui then this relation is the same as what is
considered as an order of magnitude value for vorticity fluctuations by Tennekes &
Lumley (1972).

Typical data for the amplification ratio of six individual terms of the velocity gra-
dient tensor Aij = ∂Ui/∂xj = ∂ui/∂xj are shown in table 5. Data for velocity gradients
in the lateral direction x3 are not shown since they exhibit the same behaviour as
those in the x2-direction, because of the axisymmetry of the interaction.

The data in table 5 suggest that the fluctuations of all velocity gradients in the longi-
tudinal direction, i.e. (dui/dx1), are amplified downstream of the interaction by an
average amount of about 50%. The data of (du1/dx1) also indicate a weak increase
with increasing shock strength Ms or time ratio Rt . The data of (du2/dx1) and (du3/
dx1) show no strong dependence on Ms or Rt . Due to the axisymmetric character
of the interaction, these data should be identical. There is a 15% difference between
them that can be attributed to the uncertainties involved in the measurements of these
quantities and to the deterioration of isotropy downstream of the shock interaction
with increasing Ms or Rt .
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Fluctuations of the velocity gradients in the lateral directions show no change
or a minor reduction through the interaction. Fluctuations of the off-diagonal terms
(du1/dx2) and (du3/dx2) show no substantial change while fluctuations of the diagonal
term (du2/dx2) are reduced by about 25%. Thus (du2/dx2)

′ and (du3/dx3)
′ decrease

after the shock interaction while (du1/dx1)
′ increases substantially and dilatation s′

kk

increases modestly.
These characteristics of the fluctuating components of the velocity gradient tensor

through the interaction affect the behaviour of Taylor’s microscale through the interac-
tion. As shown in figure 19(c), where data for λ11, λ22 and λ33 are plotted, Taylor’s
microscale in the longitudinal direction λ11 is reduced substantially after the interac-
tion while λ22 and λ33 show no significant change. All microscales indicate no mean-
ingful variation with Ms or Rt . In that respect, the behaviour of Taylor’s microscales
during sudden compression appear to be similar to that of the integral length scales:
they are reduced in the longitudinal directions while their extent in the lateral direc-
tions more or less remains the same.

The data on amplification of fluctuations of the vorticity vector are also tabulated
in table 5. Root mean square values of the lateral vorticity components ω′

2 and ω′
3

indicate a 25% amplification on average, which appears to be very weakly dependent
on Ms or Rt . The transmission of the longitudinal velocity fluctuations ω1 through the
shock appears to be less affected by the interaction than the fluctuations of the lateral
components ω2 and ω3. The data show a minor reduction in ω′

1 that is compatible
with the minor reductions observed in the fluctuations of the lateral velocity gradients
(du3/dx2) and (du2/dx3).

The effects of the shock interaction on the fluctuations of enstrophy, ωkωk , dilata-
tion, skk , and dilatational dissipation rate, skkskk , are also shown in table 5. A minor
increase in ωkω

′
k has been estimated from the present data. Dilatational fluctuations

of skk and skk skk appear to be amplified through the interaction more than ωkωk

fluctuations.
Amplification of fluctuations of each of the terms of the longitudinal component of

the stretching and tilting vector s1kωk are also evident from the data shown in table 5.
It appears that all terms are amplified through the interaction by various amounts.
The stretching/compressing term s11ω1 exhibits the least amplification while the other
two terms s12ω2 and s13ω3 experience the most. The situation, however, is different in
the lateral direction, where the data of table 5 show that s21ω

′
1 is amplified by about

25%, s22ω
′
2 is reduced by about 20% and s23ω

′
3 is very little affected by the interaction.

Amplification data of fluctuations of the resultant components s1kωk , s2kωk and s3kωk

are also shown in table 5. The r.m.s. values of the longitudinal component s1kω
′
k are

amplified by about 25%, while the r.m.s. values of stretching and tilting in the lateral
directions s2kω

′
k and s3kω

′
k show only small changes from their upstream values.

Amplification data of fluctuations of the dilatational source term skkωi are shown in
table 5. The results indicate significant amplification of lateral vorticity components
generated by dilatation, skkω2, skkω3, while no change can be discerned in the r.m.s.
values of skkω

′
1.

The present experimental data on amplification of velocity and vorticity fluctuations
through the shock wave interaction have been compared with theoretical data derived
from LIA and RDT as well as with results from DNS. The results of this comparison
are shown in figures 20(a) and 20(b), where the amplification ratio of the variance of
velocity and vorticity fluctuations is plotted respectively for various values of shock
wave strength, Ms . LIA and DNS data shown in these figures are the results obtained
by Lee et al. (1993).
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Figure 20. Amplification of (a) velocity and (b) vorticity fluctuations. LIA of Lee et al.
(1993); RDT of Jacquin et al. (1993); DNS of Lee et al. (1993).

The RDT of Jacquin et al. (1993) indicates that the crucial parameter which des-
cribes turbulence subjected to rapid compression is the ratio of the upstream acoustic
time scale (αuku)

−1 to the time scale of the deformation rate S−1
11 where αu is the speed

of sound and ku is the wavenumber corresponding to a characteristic length scale Lu

of the upstream turbulence, Lu = k−1
u . According to Durbin & Zeman (1992) this ratio

�m = S11Lu/αu can be interpreted as a change in a characteristic Mach number due
to the applied distortion across an eddy of size Lu. If Lu is chosen to be the dissipation
length scale Lε then �m = MtRt . Values of Rt in the present work are of order 106

while values of Mt are of order 10−2. Thus �m reaches values of order 104. If the
integral length scale of the incoming turbulence L11 is used instead of Lε then �m is
of order 102. In either case, it appears that �m 	 1 in all experiments and therefore a
dilatational regime holds where longitudinal velocity fluctuations are directly fed by
the compression without the damping effects by the pressure term. Thus, according
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to Jacquin et al. (1993) for �m2 	 1 the rapidity of the distortion does not allow any
correlation between pressure and velocity fluctuations, a situation which precludes the
damping effects of pressure and therefore maximum amplification takes place. This
leads to the following simple relations for the amplifications of longitudinal velocity
and lateral vorticity fluctuations: Gu2

1
= C2 and Gω2

2
=C2, where C is the density ratio

C = ρd/ρu. Then Gq2 = 1
3
[2 + C2] and Gω2 = 1

3
[1 + 2C2] are the amplification ratios

for the turbulent kinetic energy and enstrophy respectively. It should be noted that
these expressions are valid for solenoidal and non-solenoidal initial conditions. The
results of the RDT are also plotted in figures 20(a) and 20(b). The density ratio in the
present experiments, where the vorticity measurements were carried out, had values
in the range of 1.12 to 1.37. Density ratios up to 1.7 were also measured in other
experiments where conventional hot-wire probes were used.

LIA predicts higher amplification of velocity and vorticity fluctuations than RDT
at low Ms and assumes no changes in the velocity components parallel to the shock
front, u2 and u3. LIA results seem to level off for Ms > 1.06, while RTD predicts
continuous increase.

The present data on amplification of velocity fluctuations agree with the predictions
of LIA and RDT in the range of low Ms . At higher Ms , the data obtained with the
vorticity probe show values of Gu2

1
that are considerably higher than those predicted.

The data amplification of vorticity fluctuations, however, agree well with the theore-
tical results in the range of the measured values of Ms .

Both LIA and RDT predict that lateral vorticity fluctuations increase with the shock
strength after the interaction with the shock wave while the experimental data shown
in figure 20(b) indicate no clear trend confirming this.

LIA is based on the Rankine–Hugoniot jump relations and therefore it has the
potential to capture the physics of the interaction better than RDT, which ignores
the basic interaction between the flow and the shock.

The DNS data of Hannappel & Friedrich (1995) show that the amplification of
vorticity fluctuations in the lateral direction increases with compressibility in the
upstream flow while the amplification of longitudinal velocity fluctuations is reduced
by the same effect. These authors also found that longitudinal vorticity fluctuations
are slightly reduced through the shock, as has been found in the present experiments.

The early work of Honkan & Andreopoulos (1992) showed that amplification of
urms, Gu, also depends on the turbulence intensity and length scale of the incoming
isotropic turbulence. The present work as well the work of Briassulis & Andreopoulos
(1996) confirm this finding. The amplification of turbulent kinetic energy across
shocks seems to decrease with increasing Mt . Both experimental data from the above-
mentioned studies and the DNS data of Lee et al. (1993) and Hannappel & Friedrich
(1995) agree with this finding. Thus the outcome of the shock–turbulence interaction
depends also on the compressibility level of the incoming flow.

The effect of the shock strength on the velocity fluctuations is shown in figure 21(a).
For the 1 × 1 grid, it appears that the amplification of the standard deviation of turbu-
lence fluctuations increases with downstream distance for a given flow case and interac-
tion. Thus, turbulence amplification depends on the evolution of the flow upstream.
As Mu increases, Gu also increases. For finer grids the effects of shock interaction are
felt differently. For the 2 × 2 grid for instance, the data show that in the first case
of a practically incompressible upstream flow interacting with a rather weak shock,
amplification of turbulence occurs at x/M > 35. The amplification is greater when Mu

increases to 0.436. However, when compressibility effects in the upstream flow start
to become important no amplification takes place (Gu is about 1).
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Figure 21. (a) Effects of upstream flow compressibility and shock strength on amplification
of velocity fluctuations along the flow field in various interactions. (b) Amplification of velocity
flucuations along the flow field in various interactions with different time scale ratio Rt . (c)
Amplification of velocity fluctuations along the flow field in various interactions with different
Mach numbers.

The data shown in figure 21(a) indicate that Gu is not constant along the flow field
for a given shock wave strength, Ms . In an effort to better collapse the data shown in
figure 21(a) a different scaling has been attempted, namely the time ratio Rt has been
used instead of x/M . The results are shown in figure 21(b). There is some evidence
indicating that the data of Gu for different grids and at roughly the same Mu collapse
more closely with each other with this scaling than before. However, this scaling is
inadequate in bringing closer the data of Gu obtained at different Mu.

Some more dramatic effects of compressibility are illustrated in figure 21(c), where
the amplification Gu is plotted for the case of a finer grid with mesh size 5 × 5. The
interaction of a weak shock with a practically incompressible turbulent flow produces
the highest amplification of velocity fluctuations with Gu reaching a value close to 2.
As Mu increases, Gu decreases and at Mu = 0.576 a slight attenuation occurs at down-
stream distances. It is therefore plausible to conclude that for high shock strengths
compressibility effects control the velocity fluctuations, which are generated by fine
grids, and no amplification of turbulent kinetic energy is observed.

Hannappel & Friedrich (1995) have also shown in their DNS work that com-
pressibility effects upstream reduce turbulence amplification significantly. The LIA of
Ribner, which was initially developed for an incompressible isotropic turbulent field,
predicts amplification of turbulence fluctuations. Mahesh et al. (1997) have shown
recently that LIA as well as DNS may show a complete suppression of amplification
of kinetic energy if the upstream correlation between velocity and temperature
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Figure 22. Wavenumber-weighted power spectral densities of turbulent kinetic energy, 1/2uiui

and enstrophy, 1/2ωiωi upstream and downstream of the interaction in the case of (a) Ms = 1.04
and M = 12.7 mm, (b) Ms = 1.115 and M = 12.7mm. Solid lines, upstream values; dotted lines,
downstream values.

fluctuations is positive. It is therefore possible that in the case of very fine grids and
high-Mach-number flows, where the dissipation rate of turbulent kinetic energy is so
high, entropy or pressure fluctuations may be responsible for completely suppressing
turbulence amplification.

In the work of Briassulis (1996) amplification of velocity fluctuations after the
interaction was found in all cases involving turbulence produced by coarse grids. This
amplification increases with shock strength and flow Mach number. In the case of
fine grids, amplification was found in all interactions with low Mu, while at higher Mu

it was reduced or no amplification of turbulence was evident. These results indicate
that the outcome of the interaction depends strongly on the upstream turbulence of
the flow.

13. Spectral densities
Some further insight into the evolution of turbulence through the rapid compression

by a shock wave can be obtained by examining the one-dimensional wavenumber
spectra (power spectral densities) of turbulent kinetic energy and of enstrophy, which
describe the translational kinetic energy relative to the mean and the rotational kinetic
energy respectively. Figures 22(a) and 22(b) show spectra of 1/2uiui and 1/2ωiωi

upstream and downstream of the interaction obtained for two different interactions
with Ms = 1.04 and 1.115 respectively. These spectra have been computed from fre-
quency spectra after invoking Taylor’s hypothesis with convection velocities being
the mean velocities Uu and Ud upstream and downstream of the shock wave regions.
This is based on the assumption that the frequency of the waves, ω, remains unchan-
ged by the interaction and that the associated wavenumber, k1, changes to satisfy the
dispersion relation ω − k1Uc = 0 where Uc is the convection velocity. Because of the
difference in Uc the upstream and downstream wavenumber range will be different.
The present choice of convection velocities refers to the laboratory system of reference
as opposed to the alternative one moving with the shock, which requires different con-
vection velocities. Values of the streamwise wavenumber k1 have been non-dimen-
sionalized by the mesh size M .

The upper limit in the wavenumber scales is defined by the resolution of the instru-
mentation and the lower limit, i.e. the larger eddies are defined by the shock tube
diameter D. Thus the ratio of the largest to smallest resolvable scales is about 300:1.
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In the case of Mu = 0.308 which is shown in figure 22(a), the maximum value of the
spectral density of turbulent kinetic energy occurs at approximately k1M = 4.5 while
the maximum value of the spectral density of enstrophy occurs at about k1M = 7.
This difference in the maxima of spectral energies indicates a shift towards higher
wavenumbers of enstrophy fluctuations, which suggests that they are mainly a result
of a greater proportion of contributions by the smaller scales whereas the kinetic
energy contains contributions from relatively larger eddies.

Through the interaction the spectral content of both turbulent kinetic energy and
enstrophy changes significantly. The most revealing pattern is that, after the interac-
tion, the part of the spectrum with most of the spectral energy moves to higher wave-
numbers. This clearly indicates an amplification of turbulent kinetic energy. The
spectra of enstrophy also show a similar shift of energy towards higher wavenumbers.
The maximum value of p.s.d. occurs at k1M = 20 an almost threefold shift from the
upstream value of 7. It is also interesting to observe that the larger turbulent intensities
with the larger turbulent scale, i.e. small k1, are suppressed by the interaction.

In the case of Mu =0.388, shown in figure 22(b), the maximum of turbulent kinetic
energy is found to occur at about the same wavenumber as in the case of Mu = 0.308,
i.e. at k1M = 4.5, while the maximum energy of enstrophy occurs at a lower wave-
number k1M = 5.8. Once more, the data show that there is a shift towards higher
wavenumbers in the case of enstrophy maxima. However, it appears that increasing
Mu reduces the difference between the wavenumbers where the maxima of kinetic
energy and enstrophy occur. If one considers that the peak in turbulent kinetic energy
represents the size of large energy-containing eddies and that the peak in enstrophy
represents mostly small energy-dissipating eddies then it would be expected that this
difference or shift increases with increasing Reynolds number. The fact that this shift
decreases with Mach number in the present case indicates that the effect of Mu in
reducing this difference becomes stronger than the effect of Reynolds in increasing it.
There is also a smaller shift in wavenumber of the maximum values after the interac-
tion. In the case of enstrophy the maximum occurs at k1M = 12 which represents a
twofold increase of the upstream wavenumber of 5.7.

Of interest is the wavenumber kc where the two p.s.d. curves before and after the
interaction cross each other. Waves with k1 > kc will be amplified through the interac-
tion and waves with k1 < kc will be suppressed. In general these two curves may inter-
sect at two, one or zero points. Intersections in the low-wavenumber region are of
limited use because they are influenced by the size of the experimental facility, in
the present case the shock tube diameter D. Intersections in the high-wavenumber
regions are of more value. In the present case, it appears that a rough estimate for
both data sets is kcM ≈ 10. This value implies that for the corresponding wavelength
λc, M/λc = kcM/2π ≈ 1.6 and that D/λc = kcD/2π ≈ 38. Thus the cross-over wave-
length λc is very closely related to the mesh size M . For waves with wavelength
λ< λc amplification will take place and all waves with λ> λc will be suppressed. In
addition this information indicates that 38 wavelengths fit in the shock tube diameter,
a condition necessary for the use of the infinite-shock-wave assumption present
in LIA.

14. Shock wave modifications and the mutual interaction
One key point in the interpretation of the present results may be the possible

deformation of the shock front due to the incoming turbulence. DNS and LIA can
account for such perturbations while RDT is unable to do so. Some evidence possibly
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showing the effects of turbulence on the shock wave can be found in the work
of Xanthos et al. (2002) where the influence of grid solidity and mesh size on the
transmitted shock wave has been investigated. Their mean pressure data along the
working section are plotted against their normalized distance from the grid location
in figure 23. In all experiments with various grid sizes, the transmitted shock through
the grid had the same strength. This was achieved by slightly readjusting the incident
shock strength to account for the difference in pressure drops across the various
grids so that the pressure behind the transmitted shock was practically the same. In
this way the shock strength before the reflection off the endwall and the subsequent
interaction with the incoming turbulence was the same in most of these experiments.
The data in figure 23 show that the pressure downstream of the grid and after the
passage of the transmitted shock remains the same in all experiments with the three
different grid sizes. The present data also show that the pressure behind the shock
does not exhibit any gradient along the working section after the passage of the
incident or the reflected shock wave.

It is very interesting to observe, in figure 23, that the mean pressure behind the
reflected shock is not the same in all experiments with the same incident shock
strength (P2/P1). It appears that the reflected shock strength, P5/P1, attenuates more
in the case of fine grids. Thus, the pressure jump due to further compression by the
reflected shock is less than the value predicted by the inviscid theory. It is obvious
that there exists a substantial grid dependence of pressure losses, the cause of which
has to be further explored.

Three possible explanations have been considered for this behaviour. The first one is
based on a possibly long-lasting distortion of the shock front, which occurred during
its passage through the grid. Numerical simulations have shown that the shock wave
is considerably distorted when it is transmitted through the grid. Its front distortion
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scales with the mesh size M . It is possible that this distortion does not decay quickly
and that it has a long-lasting memory. However, our experience with shock distortions,
based on experimental and computational results, indicates that the shock wave
becomes planar within two to three shock-tube diameters even after strong reflections
over three-dimensional surfaces. In addition, it is rather unlikely that the distorted
shock wave retains the grid signature after its reflection off the endwall of the shock
tube.

As a second explanation, the behaviour of the present data may be attributed to the
different viscous losses, occurring during the reflection of the shock in the presence
of free-stream turbulence. However, decaying turbulence generated by the grids is not
present during the reflection at the endwall because it travels with the flow speed,
which is considerably lower than the speed of the shock wave. Thus, the shock wave
and the front of the decaying turbulence cannot be at the endwall location at the
same time. The turbulence, which is generated inside the unsteady boundary layers
developing over the shock tube wall behind the travelling shock and which is present
during the reflection, has not passed through the grid and therefore does not carry
any grid signature.

The most plausible interpretation of this behaviour is the strong interaction of the
reflected shock wave with the grid-generated turbulent field, which takes place away
from the endwall. The first encounter of the reflected shock with the decaying tur-
bulence occurs away from the grid where the length scales of turbulence are large and
the velocity fluctuations are small. As a result of this interaction the shock wave is
distorted considerably by the large eddies of the flow and velocity fluctuations increase
as a direct consequence of the Rankine–Hugoniot conditions. Thus the interaction
between the shock wave and the turbulence field appears to be mutual. The shock
wave retains its strength as it travels through the turbulent flow field, as is evident
from the data for mean pressure behind the reflected shock, which show no substantial
pressure gradient (see figure 23). It is believed, however, that the majority of the loss
of its strength occurs in the early stages of the interaction where the shock front first
meets the front of the decaying turbulence at a location far from the grid, where
length scales are large and intensities are low and where most of the viscous effects
are present. Apparently these viscous effects are stronger in the case of finer than
coarse grids.

At this moment it is not clear how a perturbed shock front will affect the interaction.
It is expected that any shock front corrugations will scale with the local velocity and
length scales of the most energetic eddies. The work of Lee et al. (1992) has indicated
that the r.m.s. of the local amplitude of the shock front displacement, ξrms, the r.m.s.
of its local inclination σrms and the r.m.s. of the local curvature κ2,rms are reduced
fast with increased shock strength Ms . This work has indicated that ξrms scales with
u′

1/Uuk
−1
u , σrms scales with u′

1/Uu and κ2,rms scales with u′
1/Uuku where u′

1/Uu is the
local turbulence intensity and ku is the wavenumber of the most energetic eddies in the
local upstream flow. Since u′

1/Uu is proportional to Mt/Mu, it appears that the three
characteristic parameters of the shock front distortion are reduced with increased Mu

and increase with higher Mt . If we assume that k−1
u =Lu and Lu ∝ Lε ∝ [x − x0]

1−n/2

then ξrms ∝ [x − x0]
1−n, σrms ∝ [x − x0]

−n/2 and κ2,rms ∝ [x − x0]
−1. Thus the inclination

and curvature of the shock distortions are reduced downstream of the grid, therefore
baroclinic effects which could be generated at the shock front are not expected to
be important. This argumentation leads to the conclusion that the most plausible
explanation for the pressure losses shown in figure 23 is viscous effects and not
distortions of the shock front by the incoming turbulence.



192 J. H. Agui, G. Briassulis and Y. Andreopoulos

15. Concluding remarks
An attempt has been made to investigate experimentally the effects of rapid com-

pression caused by a moving shock wave on isotropic turbulence in a large-scale shock
tube facility by employing multiple hot-wire probes of various types and related
instrumentation with high spatial and temporal resolution. The flow field was
generated by using a variety of grids of rectangular pattern of different mesh size.
The Reynolds number of the flow based on the mesh size, ReM , ranged from 50 000 to
400 000 while the turbulent Reynolds number Reλ based on Taylor’s microscale was
between 200 and 1300, which constitutes one of the highest scales ever achieved in a
laboratory flow. The range of Mach number of the flows investigated was between
0.3 and 0.6. In that respect some of the interactions with incoming flows at Mu = 0.3
are considered as interactions with an almost incompressible flow. Interactions with
shock wave Mach numbers Ms ranging from 1.04 to 1.392 were achieved in the
present investigations. The ratio of the eddy turnover time to that of the strain rate
of the interaction reached values in the range of 0.5 × 106 to 5 × 106.

A custom-designed vorticity probe was used to measure for the first time the rate-of-
strain, the rate-of-rotation and the velocity-gradient tensors in several of the present
flows. Testing and validation of the probe and its eventual use in the shock tube
flow field were formidable tasks. The difficulties associated with the measurements of
velocity gradients in non-isothermal flows are discussed in BAA. Issues related to
calibration, data analysis and spatial and temporal resolutions appeared to be the
most challenging.

A custom-made rake of hot-wire probes was also used to measure spatial correla-
tions inside the flow fields, which provided estimates of the integral length scales in
the lateral and longitudinal directions.

Integral length scales were reduced after the interaction with the shock in all investi-
gated flow cases. Taylor’s microscales were also reduced downstream of the interaction.
The integral length scales in the lateral direction increased at low Mach numbers
and decrease during strong interactions. It appears that at the weakest of the present
interactions, turbulent eddies are drastically compressed in the longitudinal direction
while their extent in the normal direction remains relatively the same. As the shock
strength increases the lateral integral length scale increases while the longitudinal
decreases. At the strongest interaction of the present flow cases turbulent eddies are
compressed in both directions. However, even at the highest Mach number the issue
is more complicated since amplification of the lateral scales has been observed in
flows with fine grids.

Amplification of longitudinal velocity fluctuations has been observed in all experi-
ments. It appears that the amplification increases in interactions with higher shock
strength. The data of velocity fluctuations in the lateral directions show no change or
some minor attenuation through the interaction. In the case of fine grids, amplification
of longitudinal velocity fluctuations was found in all interactions with low Mu, while
at higher Mu they were reduced, or no amplification of turbulence was evident. These
results indicate that the outcome of the interaction depends strongly on the upstream
turbulence of the flow.

The present results clearly show that most of the cases, either attenuation or ampli-
fication, occur at large x/M distances where length scales of the incoming flow are
high and turbulence intensities are low. Thus eddies large in size with low velocity
fluctuations are affected most by the interaction with the shock.

Fluctuations of all velocity gradients in the longitudinal direction are amplified
significantly downstream of the interaction. Fluctuations of the velocity gradients in
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the lateral directions show no change or a minor reduction through the interaction.
Root mean square values of the lateral vorticity components indicate a 25% amplifica-
tion on average, which appears to be very weakly dependent on the shock strength.
The transmission of the longitudinal vorticity fluctuations through the shock appears
to be less affected by the interaction than the fluctuations of the lateral components.

Mean helicity is zero before and after the interaction with the shock while its
fluctuations are amplified. A weak preferential alignment between vorticity and velo-
city vectors which exists in the upstream region vanishes after the interaction. The
interaction, however, does not affect the alignment between vorticity and its stretching
vector which appears to have a preferred value mostly of 0◦ or 180◦.

A spectral analysis of fluctuations of turbulent kinetic energy and enstrophy revea-
led that the interaction of the shock wave brought about an enhancement of fluctua-
tions of the smaller scales. The peak spectral amplitude of this enhancement occurred
at a wavelength corresponding to the scale of the grid mesh size and therefore it was
also related to the initial turbulence level. The spectral changes in enstrophy after the
interaction showed the clearest evidence of a shift of the rotational energy to higher
wavenumbers, and therefore to smaller scales.

A study of the vorticity stretching process revealed that this process is not conti-
nuous and it displays a strong bursting character. In most cases, enhanced stretching
fluctuations and bursting behaviour were found after the flow had interacted with
the shock wave. This was seen most clearly when the smaller mesh size grid was used
at the highest Mach number investigated. Direct measurement of the dissipation,
possible only through the availability of all the instantaneous velocity gradients,
showed that the dissipation increased through the interaction. This effect was felt
more at the lower Mach numbers investigated.

The bursting behaviour of the vortex stretching/tilting vector was also observed in
the time-dependent signals of enstrophy, dissipation rate and dilatational stretching
vector, which exhibited a rather strong intermittent behaviour that is characterized
by high-amplitude bursts with values up to 8 times their r.m.s. within periods of less
violent and longer-lived events. Several of these bursts are evident in all the signals at
the same time, suggesting the existence of a dynamical flow phenomenon as a com-
mon cause. The relation between enstrophy and dissipation rate was further explored
during these dynamically significant processes. The present data show that dissipation
dominates the flow motions more than enstrophy. Some weak activity of events indica-
tive of the existence of non-dissipative vortex tubes has been observed. Substantial
irrotational dissipative motions are also present. Downstream of the interaction, the
ranges of enstrophy and dissipation rate increase. Events indicative of non-dissipative
vortex tubes and irrotational dissipative motions are more intense in this region than
upstream of the shock. There is also significant increase in the number of events with
intense rotational and dissipative motions. Most of the flow motions with rotational
activities are associated with small but non-negligible dilatational dissipation.

The present results strongly suggest that the events that cause the high-amplitude
signals may be signatures of structures with strong vorticity and of small size, often
called ‘worms’, as was found by Kerr (1985), She, Jackson & Orszag (1991), Ruetsch &
Maxey (1991). These structures, depending on their orientation, in general are affected
strongly by the shock interaction.
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